Auto merge of #111673 - cjgillot:dominator-preprocess, r=cjgillot,tmiasko
Preprocess and cache dominator tree Preprocessing dominators has a very strong effect for https://github.com/rust-lang/rust/pull/111344. That pass checks that assignments dominate their uses repeatedly. Using the unprocessed dominator tree caused a quadratic runtime (number of bbs x depth of the dominator tree). This PR also caches the dominator tree and the pre-processed dominators in the MIR cfg cache. Rebase of https://github.com/rust-lang/rust/pull/107157 cc `@tmiasko`
This commit is contained in:
commit
97d328012b
@ -46,7 +46,7 @@ struct InvalidationGenerator<'cx, 'tcx> {
|
||||
all_facts: &'cx mut AllFacts,
|
||||
location_table: &'cx LocationTable,
|
||||
body: &'cx Body<'tcx>,
|
||||
dominators: Dominators<BasicBlock>,
|
||||
dominators: &'cx Dominators<BasicBlock>,
|
||||
borrow_set: &'cx BorrowSet<'tcx>,
|
||||
}
|
||||
|
||||
|
@ -43,7 +43,6 @@
|
||||
|
||||
use either::Either;
|
||||
use smallvec::SmallVec;
|
||||
use std::cell::OnceCell;
|
||||
use std::cell::RefCell;
|
||||
use std::collections::BTreeMap;
|
||||
use std::ops::Deref;
|
||||
@ -331,7 +330,6 @@ fn do_mir_borrowck<'tcx>(
|
||||
used_mut: Default::default(),
|
||||
used_mut_upvars: SmallVec::new(),
|
||||
borrow_set: Rc::clone(&borrow_set),
|
||||
dominators: Default::default(),
|
||||
upvars: Vec::new(),
|
||||
local_names: IndexVec::from_elem(None, &promoted_body.local_decls),
|
||||
region_names: RefCell::default(),
|
||||
@ -360,7 +358,6 @@ fn do_mir_borrowck<'tcx>(
|
||||
used_mut: Default::default(),
|
||||
used_mut_upvars: SmallVec::new(),
|
||||
borrow_set: Rc::clone(&borrow_set),
|
||||
dominators: Default::default(),
|
||||
upvars,
|
||||
local_names,
|
||||
region_names: RefCell::default(),
|
||||
@ -591,9 +588,6 @@ struct MirBorrowckCtxt<'cx, 'tcx> {
|
||||
/// The set of borrows extracted from the MIR
|
||||
borrow_set: Rc<BorrowSet<'tcx>>,
|
||||
|
||||
/// Dominators for MIR
|
||||
dominators: OnceCell<Dominators<BasicBlock>>,
|
||||
|
||||
/// Information about upvars not necessarily preserved in types or MIR
|
||||
upvars: Vec<Upvar<'tcx>>,
|
||||
|
||||
@ -2269,7 +2263,8 @@ fn is_upvar_field_projection(&self, place_ref: PlaceRef<'tcx>) -> Option<FieldId
|
||||
}
|
||||
|
||||
fn dominators(&self) -> &Dominators<BasicBlock> {
|
||||
self.dominators.get_or_init(|| self.body.basic_blocks.dominators())
|
||||
// `BasicBlocks` computes dominators on-demand and caches them.
|
||||
self.body.basic_blocks.dominators()
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -84,7 +84,7 @@ fn dominates(self, location: Location, dominators: &Dominators<mir::BasicBlock>)
|
||||
|
||||
struct LocalAnalyzer<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> {
|
||||
fx: &'mir FunctionCx<'a, 'tcx, Bx>,
|
||||
dominators: Dominators<mir::BasicBlock>,
|
||||
dominators: &'mir Dominators<mir::BasicBlock>,
|
||||
locals: IndexVec<mir::Local, LocalKind>,
|
||||
}
|
||||
|
||||
|
@ -26,7 +26,7 @@ struct PreOrderFrame<Iter> {
|
||||
struct PreorderIndex {}
|
||||
}
|
||||
|
||||
pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> {
|
||||
pub fn dominators<G: ControlFlowGraph>(graph: &G) -> Dominators<G::Node> {
|
||||
// compute the post order index (rank) for each node
|
||||
let mut post_order_rank = IndexVec::from_elem_n(0, graph.num_nodes());
|
||||
|
||||
@ -244,7 +244,10 @@ pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> {
|
||||
|
||||
let start_node = graph.start_node();
|
||||
immediate_dominators[start_node] = None;
|
||||
Dominators { start_node, post_order_rank, immediate_dominators }
|
||||
|
||||
let time = compute_access_time(start_node, &immediate_dominators);
|
||||
|
||||
Dominators { start_node, post_order_rank, immediate_dominators, time }
|
||||
}
|
||||
|
||||
/// Evaluate the link-eval virtual forest, providing the currently minimum semi
|
||||
@ -316,6 +319,7 @@ pub struct Dominators<N: Idx> {
|
||||
// possible to get its full list of dominators by looking up the dominator
|
||||
// of each dominator. (See the `impl Iterator for Iter` definition).
|
||||
immediate_dominators: IndexVec<N, Option<N>>,
|
||||
time: IndexVec<N, Time>,
|
||||
}
|
||||
|
||||
impl<Node: Idx> Dominators<Node> {
|
||||
@ -333,12 +337,7 @@ pub fn immediate_dominator(&self, node: Node) -> Option<Node> {
|
||||
/// See the `impl Iterator for Iter` definition to understand how this works.
|
||||
pub fn dominators(&self, node: Node) -> Iter<'_, Node> {
|
||||
assert!(self.is_reachable(node), "node {node:?} is not reachable");
|
||||
Iter { dominators: self, node: Some(node) }
|
||||
}
|
||||
|
||||
pub fn dominates(&self, dom: Node, node: Node) -> bool {
|
||||
// FIXME -- could be optimized by using post-order-rank
|
||||
self.dominators(node).any(|n| n == dom)
|
||||
Iter { dom_tree: self, node: Some(node) }
|
||||
}
|
||||
|
||||
/// Provide deterministic ordering of nodes such that, if any two nodes have a dominator
|
||||
@ -348,10 +347,22 @@ pub fn dominates(&self, dom: Node, node: Node) -> bool {
|
||||
pub fn rank_partial_cmp(&self, lhs: Node, rhs: Node) -> Option<Ordering> {
|
||||
self.post_order_rank[rhs].partial_cmp(&self.post_order_rank[lhs])
|
||||
}
|
||||
|
||||
/// Returns true if `a` dominates `b`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if `b` is unreachable.
|
||||
pub fn dominates(&self, a: Node, b: Node) -> bool {
|
||||
let a = self.time[a];
|
||||
let b = self.time[b];
|
||||
assert!(b.start != 0, "node {b:?} is not reachable");
|
||||
a.start <= b.start && b.finish <= a.finish
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Iter<'dom, Node: Idx> {
|
||||
dominators: &'dom Dominators<Node>,
|
||||
dom_tree: &'dom Dominators<Node>,
|
||||
node: Option<Node>,
|
||||
}
|
||||
|
||||
@ -360,10 +371,74 @@ impl<'dom, Node: Idx> Iterator for Iter<'dom, Node> {
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if let Some(node) = self.node {
|
||||
self.node = self.dominators.immediate_dominator(node);
|
||||
self.node = self.dom_tree.immediate_dominator(node);
|
||||
Some(node)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Describes the number of vertices discovered at the time when processing of a particular vertex
|
||||
/// started and when it finished. Both values are zero for unreachable vertices.
|
||||
#[derive(Copy, Clone, Default, Debug)]
|
||||
struct Time {
|
||||
start: u32,
|
||||
finish: u32,
|
||||
}
|
||||
|
||||
fn compute_access_time<N: Idx>(
|
||||
start_node: N,
|
||||
immediate_dominators: &IndexSlice<N, Option<N>>,
|
||||
) -> IndexVec<N, Time> {
|
||||
// Transpose the dominator tree edges, so that child nodes of vertex v are stored in
|
||||
// node[edges[v].start..edges[v].end].
|
||||
let mut edges: IndexVec<N, std::ops::Range<u32>> =
|
||||
IndexVec::from_elem(0..0, immediate_dominators);
|
||||
for &idom in immediate_dominators.iter() {
|
||||
if let Some(idom) = idom {
|
||||
edges[idom].end += 1;
|
||||
}
|
||||
}
|
||||
let mut m = 0;
|
||||
for e in edges.iter_mut() {
|
||||
m += e.end;
|
||||
e.start = m;
|
||||
e.end = m;
|
||||
}
|
||||
let mut node = IndexVec::from_elem_n(Idx::new(0), m.try_into().unwrap());
|
||||
for (i, &idom) in immediate_dominators.iter_enumerated() {
|
||||
if let Some(idom) = idom {
|
||||
edges[idom].start -= 1;
|
||||
node[edges[idom].start] = i;
|
||||
}
|
||||
}
|
||||
|
||||
// Perform a depth-first search of the dominator tree. Record the number of vertices discovered
|
||||
// when vertex v is discovered first as time[v].start, and when its processing is finished as
|
||||
// time[v].finish.
|
||||
let mut time: IndexVec<N, Time> = IndexVec::from_elem(Time::default(), immediate_dominators);
|
||||
let mut stack = Vec::new();
|
||||
|
||||
let mut discovered = 1;
|
||||
stack.push(start_node);
|
||||
time[start_node].start = discovered;
|
||||
|
||||
while let Some(&i) = stack.last() {
|
||||
let e = &mut edges[i];
|
||||
if e.start == e.end {
|
||||
// Finish processing vertex i.
|
||||
time[i].finish = discovered;
|
||||
stack.pop();
|
||||
} else {
|
||||
let j = node[e.start];
|
||||
e.start += 1;
|
||||
// Start processing vertex j.
|
||||
discovered += 1;
|
||||
time[j].start = discovered;
|
||||
stack.push(j);
|
||||
}
|
||||
}
|
||||
|
||||
time
|
||||
}
|
||||
|
@ -27,6 +27,7 @@ struct Cache {
|
||||
switch_sources: OnceCell<SwitchSources>,
|
||||
is_cyclic: OnceCell<bool>,
|
||||
postorder: OnceCell<Vec<BasicBlock>>,
|
||||
dominators: OnceCell<Dominators<BasicBlock>>,
|
||||
}
|
||||
|
||||
impl<'tcx> BasicBlocks<'tcx> {
|
||||
@ -41,8 +42,8 @@ pub fn is_cfg_cyclic(&self) -> bool {
|
||||
*self.cache.is_cyclic.get_or_init(|| graph::is_cyclic(self))
|
||||
}
|
||||
|
||||
pub fn dominators(&self) -> Dominators<BasicBlock> {
|
||||
dominators(&self)
|
||||
pub fn dominators(&self) -> &Dominators<BasicBlock> {
|
||||
self.cache.dominators.get_or_init(|| dominators(self))
|
||||
}
|
||||
|
||||
/// Returns predecessors for each basic block.
|
||||
|
@ -9,6 +9,7 @@
|
||||
use rustc_middle::mir::coverage::*;
|
||||
use rustc_middle::mir::{self, BasicBlock, BasicBlockData, Terminator, TerminatorKind};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
use std::ops::{Index, IndexMut};
|
||||
|
||||
const ID_SEPARATOR: &str = ",";
|
||||
@ -212,8 +213,12 @@ pub fn dominates(&self, dom: BasicCoverageBlock, node: BasicCoverageBlock) -> bo
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn dominators(&self) -> &Dominators<BasicCoverageBlock> {
|
||||
self.dominators.as_ref().unwrap()
|
||||
pub fn rank_partial_cmp(
|
||||
&self,
|
||||
a: BasicCoverageBlock,
|
||||
b: BasicCoverageBlock,
|
||||
) -> Option<Ordering> {
|
||||
self.dominators.as_ref().unwrap().rank_partial_cmp(a, b)
|
||||
}
|
||||
}
|
||||
|
||||
@ -650,26 +655,6 @@ pub(super) fn find_loop_backedges(
|
||||
let mut backedges = IndexVec::from_elem_n(Vec::<BasicCoverageBlock>::new(), num_bcbs);
|
||||
|
||||
// Identify loops by their backedges.
|
||||
//
|
||||
// The computational complexity is bounded by: n(s) x d where `n` is the number of
|
||||
// `BasicCoverageBlock` nodes (the simplified/reduced representation of the CFG derived from the
|
||||
// MIR); `s` is the average number of successors per node (which is most likely less than 2, and
|
||||
// independent of the size of the function, so it can be treated as a constant);
|
||||
// and `d` is the average number of dominators per node.
|
||||
//
|
||||
// The average number of dominators depends on the size and complexity of the function, and
|
||||
// nodes near the start of the function's control flow graph typically have less dominators
|
||||
// than nodes near the end of the CFG. Without doing a detailed mathematical analysis, I
|
||||
// think the resulting complexity has the characteristics of O(n log n).
|
||||
//
|
||||
// The overall complexity appears to be comparable to many other MIR transform algorithms, and I
|
||||
// don't expect that this function is creating a performance hot spot, but if this becomes an
|
||||
// issue, there may be ways to optimize the `dominates` algorithm (as indicated by an
|
||||
// existing `FIXME` comment in that code), or possibly ways to optimize it's usage here, perhaps
|
||||
// by keeping track of results for visited `BasicCoverageBlock`s if they can be used to short
|
||||
// circuit downstream `dominates` checks.
|
||||
//
|
||||
// For now, that kind of optimization seems unnecessarily complicated.
|
||||
for (bcb, _) in basic_coverage_blocks.iter_enumerated() {
|
||||
for &successor in &basic_coverage_blocks.successors[bcb] {
|
||||
if basic_coverage_blocks.dominates(successor, bcb) {
|
||||
|
@ -344,7 +344,7 @@ fn mir_to_initial_sorted_coverage_spans(&self) -> Vec<CoverageSpan> {
|
||||
// before the dominated equal spans). When later comparing two spans in
|
||||
// order, the first will either dominate the second, or they will have no
|
||||
// dominator relationship.
|
||||
self.basic_coverage_blocks.dominators().rank_partial_cmp(a.bcb, b.bcb)
|
||||
self.basic_coverage_blocks.rank_partial_cmp(a.bcb, b.bcb)
|
||||
}
|
||||
} else {
|
||||
// Sort hi() in reverse order so shorter spans are attempted after longer spans.
|
||||
|
@ -47,7 +47,7 @@ fn has_back_edge(
|
||||
return false;
|
||||
}
|
||||
// Check if any of the dominators of the node are also the node's successor.
|
||||
doms.dominators(node).any(|dom| node_data.terminator().successors().any(|succ| succ == dom))
|
||||
node_data.terminator().successors().any(|succ| doms.dominates(succ, node))
|
||||
}
|
||||
|
||||
fn insert_counter(basic_block_data: &mut BasicBlockData<'_>) {
|
||||
|
@ -31,11 +31,11 @@ pub struct SsaLocals {
|
||||
/// We often encounter MIR bodies with 1 or 2 basic blocks. In those cases, it's unnecessary to
|
||||
/// actually compute dominators, we can just compare block indices because bb0 is always the first
|
||||
/// block, and in any body all other blocks are always dominated by bb0.
|
||||
struct SmallDominators {
|
||||
inner: Option<Dominators<BasicBlock>>,
|
||||
struct SmallDominators<'a> {
|
||||
inner: Option<&'a Dominators<BasicBlock>>,
|
||||
}
|
||||
|
||||
impl SmallDominators {
|
||||
impl SmallDominators<'_> {
|
||||
fn dominates(&self, first: Location, second: Location) -> bool {
|
||||
if first.block == second.block {
|
||||
first.statement_index <= second.statement_index
|
||||
@ -198,14 +198,14 @@ enum LocationExtended {
|
||||
Arg,
|
||||
}
|
||||
|
||||
struct SsaVisitor {
|
||||
dominators: SmallDominators,
|
||||
struct SsaVisitor<'a> {
|
||||
dominators: SmallDominators<'a>,
|
||||
assignments: IndexVec<Local, Set1<LocationExtended>>,
|
||||
assignment_order: Vec<Local>,
|
||||
direct_uses: IndexVec<Local, u32>,
|
||||
}
|
||||
|
||||
impl<'tcx> Visitor<'tcx> for SsaVisitor {
|
||||
impl<'tcx> Visitor<'tcx> for SsaVisitor<'_> {
|
||||
fn visit_local(&mut self, local: Local, ctxt: PlaceContext, loc: Location) {
|
||||
match ctxt {
|
||||
PlaceContext::MutatingUse(MutatingUseContext::Projection)
|
||||
|
Loading…
Reference in New Issue
Block a user