Auto merge of #41887 - steveklabnik:rollup, r=steveklabnik

Rollup of 5 pull requests

- Successful merges: #41531, #41536, #41809, #41854, #41886
- Failed merges:
This commit is contained in:
bors 2017-05-10 17:10:13 +00:00
commit 978d2cfee1
4 changed files with 215 additions and 82 deletions

View File

@ -54,16 +54,33 @@ const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/// exception. If you need to mutate through an `Arc`, use [`Mutex`][mutex],
/// [`RwLock`][rwlock], or one of the [`Atomic`][atomic] types.
///
/// `Arc` uses atomic operations for reference counting, so `Arc`s can be
/// sent between threads. In other words, `Arc<T>` implements [`Send`]
/// as long as `T` implements [`Send`] and [`Sync`][sync]. The disadvantage is
/// that atomic operations are more expensive than ordinary memory accesses.
/// If you are not sharing reference-counted values between threads, consider
/// using [`rc::Rc`][`Rc`] for lower overhead. [`Rc`] is a safe default, because
/// the compiler will catch any attempt to send an [`Rc`] between threads.
/// However, a library might choose `Arc` in order to give library consumers
/// ## Thread Safety
///
/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
/// counting This means that it is thread-safe. The disadvantage is that
/// atomic operations are more expensive than ordinary memory accesses. If you
/// are not sharing reference-counted values between threads, consider using
/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
/// However, a library might choose `Arc<T>` in order to give library consumers
/// more flexibility.
///
/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
/// data, but it doesn't add thread safety to its data. Consider
/// `Arc<RefCell<T>>`. `RefCell<T>` isn't [`Sync`], and if `Arc<T>` was always
/// [`Send`], `Arc<RefCell<T>>` would be as well. But then we'd have a problem:
/// `RefCell<T>` is not thread safe; it keeps track of the borrowing count using
/// non-atomic operations.
///
/// In the end, this means that you may need to pair `Arc<T>` with some sort of
/// `std::sync` type, usually `Mutex<T>`.
///
/// ## Breaking cycles with `Weak`
///
/// The [`downgrade`][downgrade] method can be used to create a non-owning
/// [`Weak`][weak] pointer. A [`Weak`][weak] pointer can be [`upgrade`][upgrade]d
/// to an `Arc`, but this will return [`None`] if the value has already been
@ -74,6 +91,8 @@ const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/// strong `Arc` pointers from parent nodes to children, and [`Weak`][weak]
/// pointers from children back to their parents.
///
/// ## `Deref` behavior
///
/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`][deref] trait),
/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
/// clashes with `T`'s methods, the methods of `Arc<T>` itself are [associated
@ -91,13 +110,13 @@ const MAX_REFCOUNT: usize = (isize::MAX) as usize;
///
/// [arc]: struct.Arc.html
/// [weak]: struct.Weak.html
/// [`Rc`]: ../../std/rc/struct.Rc.html
/// [`Rc<T>`]: ../../std/rc/struct.Rc.html
/// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
/// [mutex]: ../../std/sync/struct.Mutex.html
/// [rwlock]: ../../std/sync/struct.RwLock.html
/// [atomic]: ../../std/sync/atomic/index.html
/// [`Send`]: ../../std/marker/trait.Send.html
/// [sync]: ../../std/marker/trait.Sync.html
/// [`Sync`]: ../../std/marker/trait.Sync.html
/// [deref]: ../../std/ops/trait.Deref.html
/// [downgrade]: struct.Arc.html#method.downgrade
/// [upgrade]: struct.Weak.html#method.upgrade

View File

@ -1005,7 +1005,7 @@ unsafe impl<T: Sync + ?Sized> Sync for Unique<T> { }
#[unstable(feature = "unique", issue = "27730")]
impl<T: Sized> Unique<T> {
/// Creates a new `Shared` that is dangling, but well-aligned.
/// Creates a new `Unique` that is dangling, but well-aligned.
///
/// This is useful for initializing types which lazily allocate, like
/// `Vec::new` does.

View File

@ -51,10 +51,17 @@
//! ```
//! use std::path::PathBuf;
//!
//! // This way works...
//! let mut path = PathBuf::from("c:\\");
//!
//! path.push("windows");
//! path.push("system32");
//!
//! path.set_extension("dll");
//!
//! // ... but push is best used if you don't know everything up
//! // front. If you do, this way is better:
//! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
//! ```
//!
//! [`Component`]: ../../std/path/enum.Component.html
@ -63,6 +70,7 @@
//! [`Path`]: ../../std/path/struct.Path.html
//! [`push`]: ../../std/path/struct.PathBuf.html#method.push
//! [`String`]: ../../std/string/struct.String.html
//!
//! [`str`]: ../../std/primitive.str.html
//! [`OsString`]: ../../std/ffi/struct.OsString.html
//! [`OsStr`]: ../../std/ffi/struct.OsStr.html
@ -1036,14 +1044,40 @@ impl<'a> cmp::Ord for Components<'a> {
///
/// # Examples
///
/// You can use [`push`] to build up a `PathBuf` from
/// components:
///
/// ```
/// use std::path::PathBuf;
///
/// let mut path = PathBuf::from("c:\\");
/// let mut path = PathBuf::new();
///
/// path.push(r"C:\");
/// path.push("windows");
/// path.push("system32");
///
/// path.set_extension("dll");
/// ```
///
/// However, [`push`] is best used for dynamic situations. This is a better way
/// to do this when you know all of the components ahead of time:
///
/// ```
/// use std::path::PathBuf;
///
/// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
/// ```
///
/// We can still do better than this! Since these are all strings, we can use
/// `From::from`:
///
/// ```
/// use std::path::PathBuf;
///
/// let path = PathBuf::from(r"C:\windows\system32.dll");
/// ```
///
/// Which method works best depends on what kind of situation you're in.
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct PathBuf {

View File

@ -96,41 +96,6 @@
//! The [`thread::current`] function is available even for threads not spawned
//! by the APIs of this module.
//!
//! ## Blocking support: park and unpark
//!
//! Every thread is equipped with some basic low-level blocking support, via the
//! [`thread::park`][`park`] function and [`thread::Thread::unpark()`][`unpark`]
//! method. [`park`] blocks the current thread, which can then be resumed from
//! another thread by calling the [`unpark`] method on the blocked thread's handle.
//!
//! Conceptually, each [`Thread`] handle has an associated token, which is
//! initially not present:
//!
//! * The [`thread::park`][`park`] function blocks the current thread unless or until
//! the token is available for its thread handle, at which point it atomically
//! consumes the token. It may also return *spuriously*, without consuming the
//! token. [`thread::park_timeout`] does the same, but allows specifying a
//! maximum time to block the thread for.
//!
//! * The [`unpark`] method on a [`Thread`] atomically makes the token available
//! if it wasn't already.
//!
//! In other words, each [`Thread`] acts a bit like a semaphore with initial count
//! 0, except that the semaphore is *saturating* (the count cannot go above 1),
//! and can return spuriously.
//!
//! The API is typically used by acquiring a handle to the current thread,
//! placing that handle in a shared data structure so that other threads can
//! find it, and then `park`ing. When some desired condition is met, another
//! thread calls [`unpark`] on the handle.
//!
//! The motivation for this design is twofold:
//!
//! * It avoids the need to allocate mutexes and condvars when building new
//! synchronization primitives; the threads already provide basic blocking/signaling.
//!
//! * It can be implemented very efficiently on many platforms.
//!
//! ## Thread-local storage
//!
//! This module also provides an implementation of thread-local storage for Rust
@ -322,6 +287,8 @@ impl Builder {
/// thread finishes). The join handle can be used to block on
/// termination of the child thread, including recovering its panics.
///
/// For a more complete documentation see [`thread::spawn`][`spawn`].
///
/// # Errors
///
/// Unlike the [`spawn`] free function, this method yields an
@ -396,19 +363,19 @@ impl Builder {
/// panics, [`join`] will return an [`Err`] containing the argument given to
/// [`panic`].
///
/// This will create a thread using default parameters of [`Builder`], if you
/// want to specify the stack size or the name of the thread, use this API
/// instead.
///
/// # Panics
///
/// Panics if the OS fails to create a thread; use [`Builder::spawn`]
/// to recover from such errors.
///
/// [`JoinHandle`]: ../../std/thread/struct.JoinHandle.html
/// [`join`]: ../../std/thread/struct.JoinHandle.html#method.join
/// [`Err`]: ../../std/result/enum.Result.html#variant.Err
/// [`panic`]: ../../std/macro.panic.html
/// [`Builder::spawn`]: ../../std/thread/struct.Builder.html#method.spawn
///
/// # Examples
///
/// Creating a thread.
///
/// ```
/// use std::thread;
///
@ -418,6 +385,54 @@ impl Builder {
///
/// handler.join().unwrap();
/// ```
///
/// As mentioned in the module documentation, threads are usually made to
/// communicate using [`channels`], here is how it usually looks.
///
/// This example also shows how to use `move`, in order to give ownership
/// of values to a thread.
///
/// ```
/// use std::thread;
/// use std::sync::mpsc::channel;
///
/// let (tx, rx) = channel();
///
/// let sender = thread::spawn(move || {
/// let _ = tx.send("Hello, thread".to_owned());
/// });
///
/// let receiver = thread::spawn(move || {
/// println!("{}", rx.recv().unwrap());
/// });
///
/// let _ = sender.join();
/// let _ = receiver.join();
/// ```
///
/// A thread can also return a value through its [`JoinHandle`], you can use
/// this to make asynchronous computations (futures might be more appropriate
/// though).
///
/// ```
/// use std::thread;
///
/// let computation = thread::spawn(|| {
/// // Some expensive computation.
/// 42
/// });
///
/// let result = computation.join().unwrap();
/// println!("{}", result);
/// ```
///
/// [`channels`]: ../../std/sync/mpsc/index.html
/// [`JoinHandle`]: ../../std/thread/struct.JoinHandle.html
/// [`join`]: ../../std/thread/struct.JoinHandle.html#method.join
/// [`Err`]: ../../std/result/enum.Result.html#variant.Err
/// [`panic`]: ../../std/macro.panic.html
/// [`Builder::spawn`]: ../../std/thread/struct.Builder.html#method.spawn
/// [`Builder`]: ../../std/thread/struct.Builder.html
#[stable(feature = "rust1", since = "1.0.0")]
pub fn spawn<F, T>(f: F) -> JoinHandle<T> where
F: FnOnce() -> T, F: Send + 'static, T: Send + 'static
@ -568,23 +583,72 @@ pub fn sleep(dur: Duration) {
/// Blocks unless or until the current thread's token is made available.
///
/// Every thread is equipped with some basic low-level blocking support, via
/// the `park()` function and the [`unpark`][unpark] method. These can be
/// used as a more CPU-efficient implementation of a spinlock.
///
/// [unpark]: struct.Thread.html#method.unpark
///
/// The API is typically used by acquiring a handle to the current thread,
/// placing that handle in a shared data structure so that other threads can
/// find it, and then parking (in a loop with a check for the token actually
/// being acquired).
///
/// A call to `park` does not guarantee that the thread will remain parked
/// forever, and callers should be prepared for this possibility.
///
/// See the [module documentation][thread] for more detail.
/// # park and unpark
///
/// [thread]: index.html
/// Every thread is equipped with some basic low-level blocking support, via the
/// [`thread::park`][`park`] function and [`thread::Thread::unpark`][`unpark`]
/// method. [`park`] blocks the current thread, which can then be resumed from
/// another thread by calling the [`unpark`] method on the blocked thread's
/// handle.
///
/// Conceptually, each [`Thread`] handle has an associated token, which is
/// initially not present:
///
/// * The [`thread::park`][`park`] function blocks the current thread unless or
/// until the token is available for its thread handle, at which point it
/// atomically consumes the token. It may also return *spuriously*, without
/// consuming the token. [`thread::park_timeout`] does the same, but allows
/// specifying a maximum time to block the thread for.
///
/// * The [`unpark`] method on a [`Thread`] atomically makes the token available
/// if it wasn't already.
///
/// In other words, each [`Thread`] acts a bit like a spinlock that can be
/// locked and unlocked using `park` and `unpark`.
///
/// The API is typically used by acquiring a handle to the current thread,
/// placing that handle in a shared data structure so that other threads can
/// find it, and then `park`ing. When some desired condition is met, another
/// thread calls [`unpark`] on the handle.
///
/// The motivation for this design is twofold:
///
/// * It avoids the need to allocate mutexes and condvars when building new
/// synchronization primitives; the threads already provide basic
/// blocking/signaling.
///
/// * It can be implemented very efficiently on many platforms.
///
/// # Examples
///
/// ```
/// use std::thread;
/// use std::time::Duration;
///
/// let parked_thread = thread::Builder::new()
/// .spawn(|| {
/// println!("Parking thread");
/// thread::park();
/// println!("Thread unparked");
/// })
/// .unwrap();
///
/// // Let some time pass for the thread to be spawned.
/// thread::sleep(Duration::from_millis(10));
///
/// println!("Unpark the thread");
/// parked_thread.thread().unpark();
///
/// parked_thread.join().unwrap();
/// ```
///
/// [`Thread`]: ../../std/thread/struct.Thread.html
/// [`park`]: ../../std/thread/fn.park.html
/// [`unpark`]: ../../std/thread/struct.Thread.html#method.unpark
/// [`thread::park_timeout`]: ../../std/thread/fn.park_timeout.html
//
// The implementation currently uses the trivial strategy of a Mutex+Condvar
// with wakeup flag, which does not actually allow spurious wakeups. In the
@ -601,21 +665,21 @@ pub fn park() {
*guard = false;
}
/// Use [park_timeout].
/// Use [`park_timeout`].
///
/// Blocks unless or until the current thread's token is made available or
/// the specified duration has been reached (may wake spuriously).
///
/// The semantics of this function are equivalent to `park()` except that the
/// thread will be blocked for roughly no longer than `ms`. This method
/// should not be used for precise timing due to anomalies such as
/// The semantics of this function are equivalent to [`park`] except
/// that the thread will be blocked for roughly no longer than `dur`. This
/// method should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely `ms` long.
///
/// See the [module documentation][thread] for more detail.
/// See the [park documentation][`park`] for more detail.
///
/// [thread]: index.html
/// [park_timeout]: fn.park_timeout.html
/// [`park_timeout`]: fn.park_timeout.html
/// [`park`]: ../../std/thread/fn.park.html
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "1.6.0", reason = "replaced by `std::thread::park_timeout`")]
pub fn park_timeout_ms(ms: u32) {
@ -625,13 +689,13 @@ pub fn park_timeout_ms(ms: u32) {
/// Blocks unless or until the current thread's token is made available or
/// the specified duration has been reached (may wake spuriously).
///
/// The semantics of this function are equivalent to `park()` except that the
/// thread will be blocked for roughly no longer than `dur`. This method
/// should not be used for precise timing due to anomalies such as
/// The semantics of this function are equivalent to [`park`][park] except
/// that the thread will be blocked for roughly no longer than `dur`. This
/// method should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely `dur` long.
///
/// See the module doc for more detail.
/// See the [park dococumentation][park] for more details.
///
/// # Platform behavior
///
@ -656,6 +720,8 @@ pub fn park_timeout_ms(ms: u32) {
/// park_timeout(timeout);
/// }
/// ```
///
/// [park]: fn.park.html
#[stable(feature = "park_timeout", since = "1.4.0")]
pub fn park_timeout(dur: Duration) {
let thread = current();
@ -777,22 +843,36 @@ impl Thread {
/// Atomically makes the handle's token available if it is not already.
///
/// See the module doc for more detail.
/// Every thread is equipped with some basic low-level blocking support, via
/// the [`park`][park] function and the `unpark()` method. These can be
/// used as a more CPU-efficient implementation of a spinlock.
///
/// See the [park documentation][park] for more details.
///
/// # Examples
///
/// ```
/// use std::thread;
/// use std::time::Duration;
///
/// let handler = thread::Builder::new()
/// let parked_thread = thread::Builder::new()
/// .spawn(|| {
/// let thread = thread::current();
/// thread.unpark();
/// println!("Parking thread");
/// thread::park();
/// println!("Thread unparked");
/// })
/// .unwrap();
///
/// handler.join().unwrap();
/// // Let some time pass for the thread to be spawned.
/// thread::sleep(Duration::from_millis(10));
///
/// println!("Unpark the thread");
/// parked_thread.thread().unpark();
///
/// parked_thread.join().unwrap();
/// ```
///
/// [park]: fn.park.html
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unpark(&self) {
let mut guard = self.inner.lock.lock().unwrap();