Auto merge of #24034 - alexcrichton:cloexec, r=aturon

The commit messages have more details as to what's going on, but this is a breaking change for any libraries which expect file descriptors to be inherited by default.

Closes #12148
This commit is contained in:
bors 2015-04-10 12:42:46 +00:00
commit 9539627ac7
10 changed files with 392 additions and 314 deletions

View File

@ -19,13 +19,13 @@ use io::prelude::*;
use ffi::OsStr;
use fmt;
use io::{self, Error, ErrorKind};
use libc;
use path;
use sync::mpsc::{channel, Receiver};
use sys::pipe2::{self, AnonPipe};
use sys::process2::Command as CommandImp;
use sys::process2::Process as ProcessImp;
use sys::process2::ExitStatus as ExitStatusImp;
use sys::process2::Stdio as StdioImp2;
use sys_common::{AsInner, AsInnerMut};
use thread;
@ -229,13 +229,13 @@ impl Command {
fn spawn_inner(&self, default_io: StdioImp) -> io::Result<Child> {
let (their_stdin, our_stdin) = try!(
setup_io(self.stdin.as_ref().unwrap_or(&default_io), 0, true)
setup_io(self.stdin.as_ref().unwrap_or(&default_io), true)
);
let (their_stdout, our_stdout) = try!(
setup_io(self.stdout.as_ref().unwrap_or(&default_io), 1, false)
setup_io(self.stdout.as_ref().unwrap_or(&default_io), false)
);
let (their_stderr, our_stderr) = try!(
setup_io(self.stderr.as_ref().unwrap_or(&default_io), 2, false)
setup_io(self.stderr.as_ref().unwrap_or(&default_io), false)
);
match ProcessImp::spawn(&self.inner, their_stdin, their_stdout, their_stderr) {
@ -328,23 +328,19 @@ impl AsInnerMut<CommandImp> for Command {
fn as_inner_mut(&mut self) -> &mut CommandImp { &mut self.inner }
}
fn setup_io(io: &StdioImp, fd: libc::c_int, readable: bool)
-> io::Result<(Option<AnonPipe>, Option<AnonPipe>)>
fn setup_io(io: &StdioImp, readable: bool)
-> io::Result<(StdioImp2, Option<AnonPipe>)>
{
use self::StdioImp::*;
Ok(match *io {
Null => {
(None, None)
}
Inherit => {
(Some(AnonPipe::from_fd(fd)), None)
}
Null => (StdioImp2::None, None),
Inherit => (StdioImp2::Inherit, None),
Piped => {
let (reader, writer) = try!(unsafe { pipe2::anon_pipe() });
let (reader, writer) = try!(pipe2::anon_pipe());
if readable {
(Some(reader), Some(writer))
(StdioImp2::Piped(reader), Some(writer))
} else {
(Some(writer), Some(reader))
(StdioImp2::Piped(writer), Some(reader))
}
}
})

View File

@ -26,39 +26,35 @@ use libc;
target_os = "dragonfly",
target_os = "bitrig",
target_os = "openbsd"))]
pub const FIONBIO: libc::c_ulong = 0x8004667e;
mod consts {
use libc;
pub const FIONBIO: libc::c_ulong = 0x8004667e;
pub const FIOCLEX: libc::c_ulong = 0x20006601;
pub const FIONCLEX: libc::c_ulong = 0x20006602;
}
#[cfg(any(all(target_os = "linux",
any(target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64")),
target_os = "android"))]
pub const FIONBIO: libc::c_ulong = 0x5421;
mod consts {
use libc;
pub const FIONBIO: libc::c_ulong = 0x5421;
pub const FIOCLEX: libc::c_ulong = 0x5451;
pub const FIONCLEX: libc::c_ulong = 0x5450;
}
#[cfg(all(target_os = "linux",
any(target_arch = "mips",
target_arch = "mipsel",
target_arch = "powerpc")))]
pub const FIONBIO: libc::c_ulong = 0x667e;
#[cfg(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "bitrig",
target_os = "openbsd"))]
pub const FIOCLEX: libc::c_ulong = 0x20006601;
#[cfg(any(all(target_os = "linux",
any(target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64")),
target_os = "android"))]
pub const FIOCLEX: libc::c_ulong = 0x5451;
#[cfg(all(target_os = "linux",
any(target_arch = "mips",
target_arch = "mipsel",
target_arch = "powerpc")))]
pub const FIOCLEX: libc::c_ulong = 0x6601;
mod consts {
use libc;
pub const FIONBIO: libc::c_ulong = 0x667e;
pub const FIOCLEX: libc::c_ulong = 0x6601;
pub const FIONCLEX: libc::c_ulong = 0x6600;
}
pub use self::consts::*;
#[cfg(any(target_os = "macos",
target_os = "ios",
@ -163,6 +159,8 @@ extern {
pub fn utimes(filename: *const libc::c_char,
times: *const libc::timeval) -> libc::c_int;
pub fn gai_strerror(errcode: libc::c_int) -> *const libc::c_char;
pub fn setgroups(ngroups: libc::c_int,
ptr: *const libc::c_void) -> libc::c_int;
}
#[cfg(any(target_os = "macos", target_os = "ios"))]

View File

@ -13,6 +13,7 @@ use core::prelude::*;
use io;
use libc::{self, c_int, size_t, c_void};
use mem;
use sys::c;
use sys::cvt;
use sys_common::AsInner;
@ -51,6 +52,13 @@ impl FileDesc {
}));
Ok(ret as usize)
}
pub fn set_cloexec(&self) {
unsafe {
let ret = c::ioctl(self.fd, c::FIOCLEX);
debug_assert_eq!(ret, 0);
}
}
}
impl AsInner<c_int> for FileDesc {
@ -59,14 +67,11 @@ impl AsInner<c_int> for FileDesc {
impl Drop for FileDesc {
fn drop(&mut self) {
// closing stdio file handles makes no sense, so never do it. Also, note
// that errors are ignored when closing a file descriptor. The reason
// for this is that if an error occurs we don't actually know if the
// file descriptor was closed or not, and if we retried (for something
// like EINTR), we might close another valid file descriptor (opened
// after we closed ours.
if self.fd > libc::STDERR_FILENO {
let _ = unsafe { libc::close(self.fd) };
}
// Note that errors are ignored when closing a file descriptor. The
// reason for this is that if an error occurs we don't actually know if
// the file descriptor was closed or not, and if we retried (for
// something like EINTR), we might close another valid file descriptor
// (opened after we closed ours.
let _ = unsafe { libc::close(self.fd) };
}
}

View File

@ -205,19 +205,27 @@ impl OpenOptions {
impl File {
pub fn open(path: &Path, opts: &OpenOptions) -> io::Result<File> {
let path = try!(cstr(path));
File::open_c(&path, opts)
}
pub fn open_c(path: &CStr, opts: &OpenOptions) -> io::Result<File> {
let flags = opts.flags | match (opts.read, opts.write) {
(true, true) => libc::O_RDWR,
(false, true) => libc::O_WRONLY,
(true, false) |
(false, false) => libc::O_RDONLY,
};
let path = try!(cstr(path));
let fd = try!(cvt_r(|| unsafe {
libc::open(path.as_ptr(), flags, opts.mode)
}));
Ok(File(FileDesc::new(fd)))
let fd = FileDesc::new(fd);
fd.set_cloexec();
Ok(File(fd))
}
pub fn into_fd(self) -> FileDesc { self.0 }
pub fn file_attr(&self) -> io::Result<FileAttr> {
let mut stat: libc::stat = unsafe { mem::zeroed() };
try!(cvt(unsafe { libc::fstat(self.0.raw(), &mut stat) }));

View File

@ -47,7 +47,9 @@ impl Socket {
};
unsafe {
let fd = try!(cvt(libc::socket(fam, ty, 0)));
Ok(Socket(FileDesc::new(fd)))
let fd = FileDesc::new(fd);
fd.set_cloexec();
Ok(Socket(fd))
}
}
@ -56,13 +58,16 @@ impl Socket {
let fd = try!(cvt_r(|| unsafe {
libc::accept(self.0.raw(), storage, len)
}));
Ok(Socket(FileDesc::new(fd)))
let fd = FileDesc::new(fd);
fd.set_cloexec();
Ok(Socket(fd))
}
pub fn duplicate(&self) -> io::Result<Socket> {
cvt(unsafe { libc::dup(self.0.raw()) }).map(|fd| {
Socket(FileDesc::new(fd))
})
let fd = try!(cvt(unsafe { libc::dup(self.0.raw()) }));
let fd = FileDesc::new(fd);
fd.set_cloexec();
Ok(Socket(fd))
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {

View File

@ -20,11 +20,10 @@ use libc;
pub struct AnonPipe(FileDesc);
pub unsafe fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
pub fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
let mut fds = [0; 2];
if libc::pipe(fds.as_mut_ptr()) == 0 {
Ok((AnonPipe::from_fd(fds[0]),
AnonPipe::from_fd(fds[1])))
if unsafe { libc::pipe(fds.as_mut_ptr()) == 0 } {
Ok((AnonPipe::from_fd(fds[0]), AnonPipe::from_fd(fds[1])))
} else {
Err(io::Error::last_os_error())
}
@ -32,7 +31,9 @@ pub unsafe fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
impl AnonPipe {
pub fn from_fd(fd: libc::c_int) -> AnonPipe {
AnonPipe(FileDesc::new(fd))
let fd = FileDesc::new(fd);
fd.set_cloexec();
AnonPipe(fd)
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
@ -43,7 +44,7 @@ impl AnonPipe {
self.0.write(buf)
}
pub fn raw(&self) -> libc::c_int {
self.0.raw()
pub fn into_fd(self) -> FileDesc {
self.0
}
}

View File

@ -13,14 +13,14 @@ use os::unix::prelude::*;
use collections::HashMap;
use env;
use ffi::{OsString, OsStr, CString};
use ffi::{OsString, OsStr, CString, CStr};
use fmt;
use io::{self, Error, ErrorKind};
use libc::{self, pid_t, c_void, c_int, gid_t, uid_t};
use mem;
use ptr;
use sys::pipe2::AnonPipe;
use sys::{self, retry, c, cvt};
use sys::fs2::{File, OpenOptions};
////////////////////////////////////////////////////////////////////////////////
// Command
@ -119,6 +119,12 @@ pub struct Process {
pid: pid_t
}
pub enum Stdio {
Inherit,
Piped(AnonPipe),
None,
}
const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX";
impl Process {
@ -128,221 +134,185 @@ impl Process {
}
pub fn spawn(cfg: &Command,
in_fd: Option<AnonPipe>, out_fd: Option<AnonPipe>, err_fd: Option<AnonPipe>)
-> io::Result<Process>
{
use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
in_fd: Stdio,
out_fd: Stdio,
err_fd: Stdio) -> io::Result<Process> {
let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null());
mod rustrt {
extern {
pub fn rust_unset_sigprocmask();
let (envp, _a, _b) = make_envp(cfg.env.as_ref());
let (argv, _a) = make_argv(&cfg.program, &cfg.args);
let (input, output) = try!(sys::pipe2::anon_pipe());
let pid = unsafe {
match libc::fork() {
0 => {
drop(input);
Process::child_after_fork(cfg, output, argv, envp, dirp,
in_fd, out_fd, err_fd)
}
n if n < 0 => return Err(Error::last_os_error()),
n => n,
}
};
let p = Process{ pid: pid };
drop(output);
let mut bytes = [0; 8];
// loop to handle EINTR
loop {
match input.read(&mut bytes) {
Ok(0) => return Ok(p),
Ok(8) => {
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
let errno = combine(&bytes[0.. 4]);
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
return Err(Error::from_raw_os_error(errno))
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => {
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("the CLOEXEC pipe failed: {:?}", e)
},
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("short read on the CLOEXEC pipe")
}
}
}
unsafe fn set_cloexec(fd: c_int) {
let ret = c::ioctl(fd, c::FIOCLEX);
assert_eq!(ret, 0);
fn combine(arr: &[u8]) -> i32 {
let a = arr[0] as u32;
let b = arr[1] as u32;
let c = arr[2] as u32;
let d = arr[3] as u32;
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
}
}
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
unsafe fn child_after_fork(cfg: &Command,
mut output: AnonPipe,
argv: *const *const libc::c_char,
envp: *const libc::c_void,
dirp: *const libc::c_char,
in_fd: Stdio,
out_fd: Stdio,
err_fd: Stdio) -> ! {
fn fail(output: &mut AnonPipe) -> ! {
let errno = sys::os::errno() as u32;
let bytes = [
(errno >> 24) as u8,
(errno >> 16) as u8,
(errno >> 8) as u8,
(errno >> 0) as u8,
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
];
// pipe I/O up to PIPE_BUF bytes should be atomic, and then we want
// to be sure we *don't* run at_exit destructors as we're being torn
// down regardless
assert!(output.write(&bytes).is_ok());
unsafe { libc::_exit(1) }
}
#[cfg(all(target_os = "android", target_arch = "aarch64"))]
unsafe fn getdtablesize() -> c_int {
libc::sysconf(libc::consts::os::sysconf::_SC_OPEN_MAX) as c_int
}
let setup = |src: Stdio, dst: c_int| {
let fd = match src {
Stdio::Inherit => return true,
Stdio::Piped(pipe) => pipe.into_fd(),
#[cfg(not(all(target_os = "android", target_arch = "aarch64")))]
unsafe fn getdtablesize() -> c_int {
libc::funcs::bsd44::getdtablesize()
}
let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null());
with_envp(cfg.env.as_ref(), |envp: *const c_void| {
with_argv(&cfg.program, &cfg.args, |argv: *const *const libc::c_char| unsafe {
let (input, mut output) = try!(sys::pipe2::anon_pipe());
// We may use this in the child, so perform allocations before the
// fork
let devnull = b"/dev/null\0";
set_cloexec(output.raw());
let pid = fork();
if pid < 0 {
return Err(Error::last_os_error())
} else if pid > 0 {
#[inline]
fn combine(arr: &[u8]) -> i32 {
let a = arr[0] as u32;
let b = arr[1] as u32;
let c = arr[2] as u32;
let d = arr[3] as u32;
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
}
let p = Process{ pid: pid };
drop(output);
let mut bytes = [0; 8];
// loop to handle EINTER
loop {
match input.read(&mut bytes) {
Ok(8) => {
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
let errno = combine(&bytes[0.. 4]);
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
return Err(Error::from_raw_os_error(errno))
}
Ok(0) => return Ok(p),
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => {
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("the CLOEXEC pipe failed: {:?}", e)
},
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("short read on the CLOEXEC pipe")
}
}
// If a stdio file descriptor is set to be ignored, we open up
// /dev/null into that file descriptor. Otherwise, the first
// file descriptor opened up in the child would be numbered as
// one of the stdio file descriptors, which is likely to wreak
// havoc.
Stdio::None => {
let mut opts = OpenOptions::new();
opts.read(dst == libc::STDIN_FILENO);
opts.write(dst != libc::STDIN_FILENO);
let devnull = CStr::from_ptr(b"/dev/null\0".as_ptr()
as *const _);
if let Ok(f) = File::open_c(devnull, &opts) {
f.into_fd()
} else {
return false
}
}
};
retry(|| libc::dup2(fd.raw(), dst)) != -1
};
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
let _ = libc::close(input.raw());
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
fn fail(output: &mut AnonPipe) -> ! {
let errno = sys::os::errno() as u32;
let bytes = [
(errno >> 24) as u8,
(errno >> 16) as u8,
(errno >> 8) as u8,
(errno >> 0) as u8,
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
];
// pipe I/O up to PIPE_BUF bytes should be atomic
assert!(output.write(&bytes).is_ok());
unsafe { libc::_exit(1) }
}
rustrt::rust_unset_sigprocmask();
// If a stdio file descriptor is set to be ignored, we don't
// actually close it, but rather open up /dev/null into that
// file descriptor. Otherwise, the first file descriptor opened
// up in the child would be numbered as one of the stdio file
// descriptors, which is likely to wreak havoc.
let setup = |src: Option<AnonPipe>, dst: c_int| {
let src = match src {
None => {
let flags = if dst == libc::STDIN_FILENO {
libc::O_RDONLY
} else {
libc::O_RDWR
};
libc::open(devnull.as_ptr() as *const _, flags, 0)
}
Some(obj) => {
let fd = obj.raw();
// Leak the memory and the file descriptor. We're in the
// child now an all our resources are going to be
// cleaned up very soon
mem::forget(obj);
fd
}
};
src != -1 && retry(|| dup2(src, dst)) != -1
};
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
// close all other fds
for fd in (3..getdtablesize()).rev() {
if fd != output.raw() {
let _ = close(fd as c_int);
}
}
match cfg.gid {
Some(u) => {
if libc::setgid(u as libc::gid_t) != 0 {
fail(&mut output);
}
}
None => {}
}
match cfg.uid {
Some(u) => {
// When dropping privileges from root, the `setgroups` call
// will remove any extraneous groups. If we don't call this,
// then even though our uid has dropped, we may still have
// groups that enable us to do super-user things. This will
// fail if we aren't root, so don't bother checking the
// return value, this is just done as an optimistic
// privilege dropping function.
extern {
fn setgroups(ngroups: libc::c_int,
ptr: *const libc::c_void) -> libc::c_int;
}
let _ = setgroups(0, ptr::null());
if libc::setuid(u as libc::uid_t) != 0 {
fail(&mut output);
}
}
None => {}
}
if cfg.detach {
// Don't check the error of setsid because it fails if we're the
// process leader already. We just forked so it shouldn't return
// error, but ignore it anyway.
let _ = libc::setsid();
}
if !dirp.is_null() && chdir(dirp) == -1 {
fail(&mut output);
}
if !envp.is_null() {
*sys::os::environ() = envp as *const _;
}
let _ = execvp(*argv, argv as *mut _);
if let Some(u) = cfg.gid {
if libc::setgid(u as libc::gid_t) != 0 {
fail(&mut output);
})
})
}
}
if let Some(u) = cfg.uid {
// When dropping privileges from root, the `setgroups` call
// will remove any extraneous groups. If we don't call this,
// then even though our uid has dropped, we may still have
// groups that enable us to do super-user things. This will
// fail if we aren't root, so don't bother checking the
// return value, this is just done as an optimistic
// privilege dropping function.
let _ = c::setgroups(0, ptr::null());
if libc::setuid(u as libc::uid_t) != 0 {
fail(&mut output);
}
}
if cfg.detach {
// Don't check the error of setsid because it fails if we're the
// process leader already. We just forked so it shouldn't return
// error, but ignore it anyway.
let _ = libc::setsid();
}
if !dirp.is_null() && libc::chdir(dirp) == -1 {
fail(&mut output);
}
if !envp.is_null() {
*sys::os::environ() = envp as *const _;
}
let _ = libc::execvp(*argv, argv as *mut _);
fail(&mut output)
}
pub fn wait(&self) -> io::Result<ExitStatus> {
@ -364,8 +334,8 @@ impl Process {
}
}
fn with_argv<T,F>(prog: &CString, args: &[CString], cb: F) -> T
where F : FnOnce(*const *const libc::c_char) -> T
fn make_argv(prog: &CString, args: &[CString])
-> (*const *const libc::c_char, Vec<*const libc::c_char>)
{
let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
@ -380,40 +350,38 @@ fn with_argv<T,F>(prog: &CString, args: &[CString], cb: F) -> T
// Add a terminating null pointer (required by libc).
ptrs.push(ptr::null());
cb(ptrs.as_ptr())
(ptrs.as_ptr(), ptrs)
}
fn with_envp<T, F>(env: Option<&HashMap<OsString, OsString>>, cb: F) -> T
where F : FnOnce(*const c_void) -> T
fn make_envp(env: Option<&HashMap<OsString, OsString>>)
-> (*const c_void, Vec<Vec<u8>>, Vec<*const libc::c_char>)
{
// On posixy systems we can pass a char** for envp, which is a
// null-terminated array of "k=v\0" strings. Since we must create
// these strings locally, yet expose a raw pointer to them, we
// create a temporary vector to own the CStrings that outlives the
// call to cb.
match env {
Some(env) => {
let mut tmps = Vec::with_capacity(env.len());
if let Some(env) = env {
let mut tmps = Vec::with_capacity(env.len());
for pair in env {
let mut kv = Vec::new();
kv.push_all(pair.0.as_bytes());
kv.push('=' as u8);
kv.push_all(pair.1.as_bytes());
kv.push(0); // terminating null
tmps.push(kv);
}
// As with `with_argv`, this is unsafe, since cb could leak the pointers.
let mut ptrs: Vec<*const libc::c_char> =
tmps.iter()
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
.collect();
ptrs.push(ptr::null());
cb(ptrs.as_ptr() as *const c_void)
for pair in env {
let mut kv = Vec::new();
kv.push_all(pair.0.as_bytes());
kv.push('=' as u8);
kv.push_all(pair.1.as_bytes());
kv.push(0); // terminating null
tmps.push(kv);
}
_ => cb(ptr::null())
let mut ptrs: Vec<*const libc::c_char> =
tmps.iter()
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
.collect();
ptrs.push(ptr::null());
(ptrs.as_ptr() as *const _, tmps, ptrs)
} else {
(0 as *const _, Vec::new(), Vec::new())
}
}

View File

@ -22,22 +22,24 @@ pub struct AnonPipe {
fd: c_int
}
pub unsafe fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
pub fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
// Windows pipes work subtly differently than unix pipes, and their
// inheritance has to be handled in a different way that I do not
// fully understand. Here we explicitly make the pipe non-inheritable,
// which means to pass it to a subprocess they need to be duplicated
// first, as in std::run.
let mut fds = [0; 2];
match libc::pipe(fds.as_mut_ptr(), 1024 as ::libc::c_uint,
(libc::O_BINARY | libc::O_NOINHERIT) as c_int) {
0 => {
assert!(fds[0] != -1 && fds[0] != 0);
assert!(fds[1] != -1 && fds[1] != 0);
unsafe {
match libc::pipe(fds.as_mut_ptr(), 1024 as ::libc::c_uint,
(libc::O_BINARY | libc::O_NOINHERIT) as c_int) {
0 => {
assert!(fds[0] != -1 && fds[0] != 0);
assert!(fds[1] != -1 && fds[1] != 0);
Ok((AnonPipe::from_fd(fds[0]), AnonPipe::from_fd(fds[1])))
Ok((AnonPipe::from_fd(fds[0]), AnonPipe::from_fd(fds[1])))
}
_ => Err(io::Error::last_os_error()),
}
_ => Err(io::Error::last_os_error()),
}
}

View File

@ -105,11 +105,18 @@ pub struct Process {
handle: Handle,
}
pub enum Stdio {
Inherit,
Piped(AnonPipe),
None,
}
impl Process {
#[allow(deprecated)]
pub fn spawn(cfg: &Command,
in_fd: Option<AnonPipe>, out_fd: Option<AnonPipe>, err_fd: Option<AnonPipe>)
-> io::Result<Process>
in_fd: Stdio,
out_fd: Stdio,
err_fd: Stdio) -> io::Result<Process>
{
use libc::types::os::arch::extra::{DWORD, HANDLE, STARTUPINFO};
use libc::consts::os::extra::{
@ -156,13 +163,16 @@ impl Process {
let cur_proc = GetCurrentProcess();
// Similarly to unix, we don't actually leave holes for the stdio file
// descriptors, but rather open up /dev/null equivalents. These
// equivalents are drawn from libuv's windows process spawning.
let set_fd = |fd: &Option<AnonPipe>, slot: &mut HANDLE,
let set_fd = |fd: &Stdio, slot: &mut HANDLE,
is_stdin: bool| {
match *fd {
None => {
Stdio::Inherit => {}
// Similarly to unix, we don't actually leave holes for the
// stdio file descriptors, but rather open up /dev/null
// equivalents. These equivalents are drawn from libuv's
// windows process spawning.
Stdio::None => {
let access = if is_stdin {
libc::FILE_GENERIC_READ
} else {
@ -188,11 +198,8 @@ impl Process {
return Err(Error::last_os_error())
}
}
Some(ref pipe) => {
Stdio::Piped(ref pipe) => {
let orig = pipe.raw();
if orig == INVALID_HANDLE_VALUE {
return Err(Error::last_os_error())
}
if DuplicateHandle(cur_proc, orig, cur_proc, slot,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE {
return Err(Error::last_os_error())
@ -235,9 +242,15 @@ impl Process {
})
});
assert!(CloseHandle(si.hStdInput) != 0);
assert!(CloseHandle(si.hStdOutput) != 0);
assert!(CloseHandle(si.hStdError) != 0);
if !in_fd.inherited() {
assert!(CloseHandle(si.hStdInput) != 0);
}
if !out_fd.inherited() {
assert!(CloseHandle(si.hStdOutput) != 0);
}
if !err_fd.inherited() {
assert!(CloseHandle(si.hStdError) != 0);
}
match create_err {
Some(err) => return Err(err),
@ -296,6 +309,12 @@ impl Process {
}
}
impl Stdio {
fn inherited(&self) -> bool {
match *self { Stdio::Inherit => true, _ => false }
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(i32);

View File

@ -0,0 +1,76 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// ignore-windows
// ignore-android
#![feature(libc)]
extern crate libc;
use std::env;
use std::fs::{self, File};
use std::io;
use std::net::{TcpListener, TcpStream, UdpSocket};
use std::os::unix::prelude::*;
use std::process::Command;
use std::thread;
fn main() {
let args = env::args().collect::<Vec<_>>();
if args.len() == 1 {
parent()
} else {
child(&args)
}
}
fn parent() {
let file = File::open("Makefile").unwrap();
let _dir = fs::read_dir("/").unwrap();
let tcp1 = TcpListener::bind("127.0.0.1:0").unwrap();
assert_eq!(tcp1.as_raw_fd(), file.as_raw_fd() + 2);
let tcp2 = tcp1.try_clone().unwrap();
let addr = tcp1.local_addr().unwrap();
let t = thread::scoped(|| TcpStream::connect(addr).unwrap());
let tcp3 = tcp1.accept().unwrap().0;
let tcp4 = t.join();
let tcp5 = tcp3.try_clone().unwrap();
let tcp6 = tcp4.try_clone().unwrap();
let udp1 = UdpSocket::bind("127.0.0.1:0").unwrap();
let udp2 = udp1.try_clone().unwrap();
let status = Command::new(env::args().next().unwrap())
.arg(file.as_raw_fd().to_string())
.arg((file.as_raw_fd() + 1).to_string())
.arg(tcp1.as_raw_fd().to_string())
.arg(tcp2.as_raw_fd().to_string())
.arg(tcp3.as_raw_fd().to_string())
.arg(tcp4.as_raw_fd().to_string())
.arg(tcp5.as_raw_fd().to_string())
.arg(tcp6.as_raw_fd().to_string())
.arg(udp1.as_raw_fd().to_string())
.arg(udp2.as_raw_fd().to_string())
.status()
.unwrap();
assert!(status.success());
}
fn child(args: &[String]) {
let mut b = [0u8; 2];
for arg in &args[1..] {
let fd: libc::c_int = arg.parse().unwrap();
unsafe {
assert_eq!(libc::read(fd, b.as_mut_ptr() as *mut _, 2), -1);
assert_eq!(io::Error::last_os_error().raw_os_error(),
Some(libc::EBADF));
}
}
}