Add as_uninit-like methods to pointer types and unify documentation of as_ref methods

Fix example in `NonNull::as_uninit_slice`


Rename feature gate to "ptr_as_uninit"


Make methods more consistent with already stable methods


Make `pointer::as_uninit_slice` return an `Option`


Fix placement for `// SAFETY` section


Add `as_uninit_ref` and `as_uninit_mut` to pointers


Fix doctest


Update tracking issue


Fix doc links


Apply suggestions from review


Make wording about counterparts consistent


Fix doc links


Improve documentation

Fix doc-tests


Fix doc links ... again


Apply suggestions from review


Apply suggestions from Review


Apply suggestion from review to all affected files


Add missing words in safety sections in `as_uninit_slice_mut`


Fix safety-comment in `NonNull::as_uninit_slice_mut`
This commit is contained in:
Tim Diekmann 2020-08-17 14:22:59 +02:00
parent 441fd22557
commit 93e074bc8a
4 changed files with 568 additions and 81 deletions

View File

@ -114,6 +114,7 @@
#![feature(optin_builtin_traits)]
#![feature(or_patterns)]
#![feature(prelude_import)]
#![feature(ptr_as_uninit)]
#![feature(repr_simd, platform_intrinsics)]
#![feature(rustc_attrs)]
#![feature(simd_ffi)]

View File

@ -2,7 +2,7 @@ use super::*;
use crate::cmp::Ordering::{self, Equal, Greater, Less};
use crate::intrinsics;
use crate::mem;
use crate::slice::SliceIndex;
use crate::slice::{self, SliceIndex};
#[lang = "const_ptr"]
impl<T: ?Sized> *const T {
@ -38,32 +38,33 @@ impl<T: ?Sized> *const T {
self as _
}
/// Returns `None` if the pointer is null, or else returns a reference to
/// the value wrapped in `Some`.
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. If the value may be uninitialized, [`as_uninit_ref`]
/// must be used instead.
///
/// [`as_uninit_ref`]: #method.as_uninit_ref
///
/// # Safety
///
/// While this method and its mutable counterpart are useful for
/// null-safety, it is important to note that this is still an unsafe
/// operation because the returned value could be pointing to invalid
/// memory.
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
/// - it is properly aligned
/// - it must point to an initialized instance of T; in particular, the pointer must be
/// "dereferenceable" in the sense defined [here].
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * The pointer must point to an initialized instance of `T`.
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
/// (The part about being initialized is not yet fully decided, but until
/// it is, the only safe approach is to ensure that they are indeed initialized.)
///
/// Additionally, the lifetime `'a` returned is arbitrarily chosen and does
/// not necessarily reflect the actual lifetime of the data. *You* must enforce
/// Rust's aliasing rules. In particular, for the duration of this lifetime,
/// the memory the pointer points to must not get mutated (except inside `UnsafeCell`).
///
/// [here]: crate::ptr#safety
/// [the module documentation]: crate::ptr#safety
///
/// # Examples
///
@ -101,6 +102,56 @@ impl<T: ?Sized> *const T {
if self.is_null() { None } else { unsafe { Some(&*self) } }
}
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// [`as_ref`]: #method.as_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// [the module documentation]: crate::ptr#safety
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(ptr_as_uninit)]
///
/// let ptr: *const u8 = &10u8 as *const u8;
///
/// unsafe {
/// if let Some(val_back) = ptr.as_uninit_ref() {
/// println!("We got back the value: {}!", val_back.assume_init());
/// }
/// }
/// ```
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_ref<'a>(self) -> Option<&'a MaybeUninit<T>>
where
T: Sized,
{
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
if self.is_null() { None } else { Some(unsafe { &*(self as *const MaybeUninit<T>) }) }
}
/// Calculates the offset from a pointer.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
@ -906,6 +957,55 @@ impl<T> *const [T] {
// SAFETY: the caller ensures that `self` is dereferencable and `index` in-bounds.
unsafe { index.get_unchecked(self) }
}
/// Returns `None` if the pointer is null, or else returns a shared slice to
/// the value wrapped in `Some`. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// [`as_ref`]: #method.as_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
///
/// * The pointer must be [valid] for reads for `ptr.len() * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts`][].
///
/// [valid]: crate::ptr#safety
/// [`NonNull::dangling()`]: NonNull::dangling
/// [`pointer::offset`]: ../std/primitive.pointer.html#method.offset
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_slice<'a>(self) -> Option<&'a [MaybeUninit<T>]> {
if self.is_null() {
None
} else {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
Some(unsafe { slice::from_raw_parts(self as *const MaybeUninit<T>, self.len()) })
}
}
}
// Equality for pointers

View File

@ -1,7 +1,7 @@
use super::*;
use crate::cmp::Ordering::{self, Equal, Greater, Less};
use crate::intrinsics;
use crate::slice::SliceIndex;
use crate::slice::{self, SliceIndex};
#[lang = "mut_ptr"]
impl<T: ?Sized> *mut T {
@ -37,32 +37,36 @@ impl<T: ?Sized> *mut T {
self as _
}
/// Returns `None` if the pointer is null, or else returns a reference to
/// the value wrapped in `Some`.
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. If the value may be uninitialized, [`as_uninit_ref`]
/// must be used instead.
///
/// For the mutable counterpart see [`as_mut`].
///
/// [`as_uninit_ref`]: #method.as_uninit_ref-1
/// [`as_mut`]: #method.as_mut
///
/// # Safety
///
/// While this method and its mutable counterpart are useful for
/// null-safety, it is important to note that this is still an unsafe
/// operation because the returned value could be pointing to invalid
/// memory.
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
/// - it is properly aligned
/// - it must point to an initialized instance of T; in particular, the pointer must be
/// "dereferencable" in the sense defined [here].
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * The pointer must point to an initialized instance of `T`.
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
/// (The part about being initialized is not yet fully decided, but until
/// it is, the only safe approach is to ensure that they are indeed initialized.)
///
/// Additionally, the lifetime `'a` returned is arbitrarily chosen and does
/// not necessarily reflect the actual lifetime of the data. *You* must enforce
/// Rust's aliasing rules. In particular, for the duration of this lifetime,
/// the memory the pointer points to must not get mutated (except inside `UnsafeCell`).
///
/// [here]: crate::ptr#safety
/// [the module documentation]: crate::ptr#safety
///
/// # Examples
///
@ -100,6 +104,59 @@ impl<T: ?Sized> *mut T {
if self.is_null() { None } else { unsafe { Some(&*self) } }
}
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_mut`].
///
/// [`as_ref`]: #method.as_ref-1
/// [`as_uninit_mut`]: #method.as_uninit_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// [the module documentation]: crate::ptr#safety
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(ptr_as_uninit)]
///
/// let ptr: *mut u8 = &mut 10u8 as *mut u8;
///
/// unsafe {
/// if let Some(val_back) = ptr.as_uninit_ref() {
/// println!("We got back the value: {}!", val_back.assume_init());
/// }
/// }
/// ```
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_ref<'a>(self) -> Option<&'a MaybeUninit<T>>
where
T: Sized,
{
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
if self.is_null() { None } else { Some(unsafe { &*(self as *const MaybeUninit<T>) }) }
}
/// Calculates the offset from a pointer.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
@ -225,33 +282,36 @@ impl<T: ?Sized> *mut T {
unsafe { intrinsics::arith_offset(self, count) as *mut T }
}
/// Returns `None` if the pointer is null, or else returns a mutable
/// reference to the value wrapped in `Some`.
/// Returns `None` if the pointer is null, or else returns a unique reference to
/// the value wrapped in `Some`. If the value may be uninitialized, [`as_uninit_mut`]
/// must be used instead.
///
/// For the shared counterpart see [`as_ref`].
///
/// [`as_uninit_mut`]: #method.as_uninit_mut
/// [`as_ref`]: #method.as_ref-1
///
/// # Safety
///
/// As with [`as_ref`], this is unsafe because it cannot verify the validity
/// of the returned pointer, nor can it ensure that the lifetime `'a`
/// returned is indeed a valid lifetime for the contained data.
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
/// - it is properly aligned
/// - it must point to an initialized instance of T; in particular, the pointer must be
/// "dereferenceable" in the sense defined [here].
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * The pointer must point to an initialized instance of `T`.
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
/// (The part about being initialized is not yet fully decided, but until
/// it is the only safe approach is to ensure that they are indeed initialized.)
/// it is, the only safe approach is to ensure that they are indeed initialized.)
///
/// Additionally, the lifetime `'a` returned is arbitrarily chosen and does
/// not necessarily reflect the actual lifetime of the data. *You* must enforce
/// Rust's aliasing rules. In particular, for the duration of this lifetime,
/// the memory this pointer points to must not get accessed (read or written)
/// through any other pointer.
///
/// [here]: crate::ptr#safety
/// [`as_ref`]: #method.as_ref
/// [the module documentation]: crate::ptr#safety
///
/// # Examples
///
@ -262,6 +322,7 @@ impl<T: ?Sized> *mut T {
/// let ptr: *mut u32 = s.as_mut_ptr();
/// let first_value = unsafe { ptr.as_mut().unwrap() };
/// *first_value = 4;
/// # assert_eq!(s, [4, 2, 3]);
/// println!("{:?}", s); // It'll print: "[4, 2, 3]".
/// ```
///
@ -276,6 +337,7 @@ impl<T: ?Sized> *mut T {
/// let ptr: *mut u32 = s.as_mut_ptr();
/// let first_value = unsafe { &mut *ptr };
/// *first_value = 4;
/// # assert_eq!(s, [4, 2, 3]);
/// println!("{:?}", s); // It'll print: "[4, 2, 3]".
/// ```
#[stable(feature = "ptr_as_ref", since = "1.9.0")]
@ -286,6 +348,43 @@ impl<T: ?Sized> *mut T {
if self.is_null() { None } else { unsafe { Some(&mut *self) } }
}
/// Returns `None` if the pointer is null, or else returns a unique reference to
/// the value wrapped in `Some`. In contrast to [`as_mut`], this does not require
/// that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_ref`].
///
/// [`as_mut`]: #method.as_mut
/// [`as_uninit_ref`]: #method.as_uninit_ref-1
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
///
/// [the module documentation]: crate::ptr#safety
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_mut<'a>(self) -> Option<&'a mut MaybeUninit<T>>
where
T: Sized,
{
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
if self.is_null() { None } else { Some(unsafe { &mut *(self as *mut MaybeUninit<T>) }) }
}
/// Returns whether two pointers are guaranteed to be equal.
///
/// At runtime this function behaves like `self == other`.
@ -1112,6 +1211,110 @@ impl<T> *mut [T] {
// SAFETY: the caller ensures that `self` is dereferencable and `index` in-bounds.
unsafe { index.get_unchecked_mut(self) }
}
/// Returns `None` if the pointer is null, or else returns a shared slice to
/// the value wrapped in `Some`. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_slice_mut`].
///
/// [`as_ref`]: #method.as_ref-1
/// [`as_uninit_slice_mut`]: #method.as_uninit_slice_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
///
/// * The pointer must be [valid] for reads for `ptr.len() * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts`][].
///
/// [valid]: crate::ptr#safety
/// [`NonNull::dangling()`]: NonNull::dangling
/// [`pointer::offset`]: ../std/primitive.pointer.html#method.offset
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_slice<'a>(self) -> Option<&'a [MaybeUninit<T>]> {
if self.is_null() {
None
} else {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
Some(unsafe { slice::from_raw_parts(self as *const MaybeUninit<T>, self.len()) })
}
}
/// Returns `None` if the pointer is null, or else returns a unique slice to
/// the value wrapped in `Some`. In contrast to [`as_mut`], this does not require
/// that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_slice`].
///
/// [`as_mut`]: #method.as_mut
/// [`as_uninit_slice`]: #method.as_uninit_slice-1
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
///
/// * The pointer must be [valid] for reads and writes for `ptr.len() * mem::size_of::<T>()`
/// many bytes, and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts_mut`][].
///
/// [valid]: crate::ptr#safety
/// [`NonNull::dangling()`]: NonNull::dangling
/// [`pointer::offset`]: ../std/primitive.pointer.html#method.offset
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_slice_mut<'a>(self) -> Option<&'a mut [MaybeUninit<T>]> {
if self.is_null() {
None
} else {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
Some(unsafe { slice::from_raw_parts_mut(self as *mut MaybeUninit<T>, self.len()) })
}
}
}
// Equality for pointers

View File

@ -3,10 +3,10 @@ use crate::convert::From;
use crate::fmt;
use crate::hash;
use crate::marker::Unsize;
use crate::mem;
use crate::mem::{self, MaybeUninit};
use crate::ops::{CoerceUnsized, DispatchFromDyn};
use crate::ptr::Unique;
use crate::slice::SliceIndex;
use crate::slice::{self, SliceIndex};
/// `*mut T` but non-zero and covariant.
///
@ -76,6 +76,70 @@ impl<T: Sized> NonNull<T> {
NonNull::new_unchecked(ptr)
}
}
/// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_mut`].
///
/// [`as_ref`]: #method.as_ref
/// [`as_uninit_mut`]: #method.as_uninit_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// [the module documentation]: crate::ptr#safety
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_ref(&self) -> &MaybeUninit<T> {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
unsafe { &*self.cast().as_ptr() }
}
/// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
/// that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_ref`].
///
/// [`as_mut`]: #method.as_mut
/// [`as_uninit_ref`]: #method.as_uninit_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
///
/// [the module documentation]: crate::ptr#safety
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_mut(&mut self) -> &mut MaybeUninit<T> {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
unsafe { &mut *self.cast().as_ptr() }
}
}
impl<T: ?Sized> NonNull<T> {
@ -112,29 +176,34 @@ impl<T: ?Sized> NonNull<T> {
self.pointer as *mut T
}
/// Dereferences the content.
/// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
/// must be used instead.
///
/// The resulting lifetime is bound to self so this behaves "as if"
/// it were actually an instance of T that is getting borrowed. If a longer
/// (unbound) lifetime is needed, use `&*my_ptr.as_ptr()`.
/// For the mutable counterpart see [`as_mut`].
///
/// [`as_uninit_ref`]: #method.as_uninit_ref
/// [`as_mut`]: #method.as_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
/// - `self` is properly aligned
/// - `self` must point to an initialized instance of T; in particular, the pointer must be
/// "dereferencable" in the sense defined [here].
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * The pointer must point to an initialized instance of `T`.
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
/// (The part about being initialized is not yet fully decided, but until
/// it is, the only safe approach is to ensure that they are indeed initialized.)
///
/// Additionally, the lifetime of `self` does not necessarily reflect the actual
/// lifetime of the data. *You* must enforce Rust's aliasing rules. In particular,
/// for the duration of this lifetime, the memory the pointer points to must not
/// get mutated (except inside `UnsafeCell`).
///
/// [here]: crate::ptr#safety
/// [the module documentation]: crate::ptr#safety
#[stable(feature = "nonnull", since = "1.25.0")]
#[inline]
pub unsafe fn as_ref(&self) -> &T {
@ -143,29 +212,34 @@ impl<T: ?Sized> NonNull<T> {
unsafe { &*self.as_ptr() }
}
/// Mutably dereferences the content.
/// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
/// must be used instead.
///
/// The resulting lifetime is bound to self so this behaves "as if"
/// it were actually an instance of T that is getting borrowed. If a longer
/// (unbound) lifetime is needed, use `&mut *my_ptr.as_ptr()`.
/// For the shared counterpart see [`as_ref`].
///
/// [`as_uninit_mut`]: #method.as_uninit_mut
/// [`as_ref`]: #method.as_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
/// - `self` is properly aligned
/// - `self` must point to an initialized instance of T; in particular, the pointer must be
/// "dereferenceable" in the sense defined [here].
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * The pointer must point to an initialized instance of `T`.
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
/// (The part about being initialized is not yet fully decided, but until
/// it is the only safe approach is to ensure that they are indeed initialized.)
/// it is, the only safe approach is to ensure that they are indeed initialized.)
///
/// Additionally, the lifetime of `self` does not necessarily reflect the actual
/// lifetime of the data. *You* must enforce Rust's aliasing rules. In particular,
/// for the duration of this lifetime, the memory this pointer points to must not
/// get accessed (read or written) through any other pointer.
///
/// [here]: crate::ptr#safety
/// [the module documentation]: crate::ptr#safety
#[stable(feature = "nonnull", since = "1.25.0")]
#[inline]
pub unsafe fn as_mut(&mut self) -> &mut T {
@ -278,6 +352,115 @@ impl<T> NonNull<[T]> {
self.as_non_null_ptr().as_ptr()
}
/// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
/// [`as_ref`], this does not require that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_slice_mut`].
///
/// [`as_ref`]: #method.as_ref
/// [`as_uninit_slice_mut`]: #method.as_uninit_slice_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be [valid] for reads for `ptr.len() * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts`][].
///
/// [valid]: crate::ptr#safety
/// [`NonNull::dangling()`]: NonNull::dangling
/// [`pointer::offset`]: ../../std/primitive.pointer.html#method.offset
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_slice(&self) -> &[MaybeUninit<T>] {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
}
/// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
/// [`as_mut`], this does not require that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_slice`].
///
/// [`as_mut`]: #method.as_mut
/// [`as_uninit_slice`]: #method.as_uninit_slice
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be [valid] for reads and writes for `ptr.len() * mem::size_of::<T>()`
/// many bytes, and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts_mut`][].
///
/// [valid]: crate::ptr#safety
/// [`NonNull::dangling()`]: NonNull::dangling
/// [`pointer::offset`]: ../../std/primitive.pointer.html#method.offset
///
/// # Examples
///
/// ```rust
/// #![feature(allocator_api, ptr_as_uninit)]
///
/// use std::alloc::{AllocRef, Layout, Global};
/// use std::mem::MaybeUninit;
/// use std::ptr::NonNull;
///
/// let memory: NonNull<[u8]> = Global.alloc(Layout::new::<[u8; 32]>())?;
/// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
/// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
/// # #[allow(unused_variables)]
/// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
/// # Ok::<_, std::alloc::AllocErr>(())
/// ```
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_slice_mut(&self) -> &mut [MaybeUninit<T>] {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
}
/// Returns a raw pointer to an element or subslice, without doing bounds
/// checking.
///