Auto merge of #125069 - amandasystems:scc-refactor, r=nikomatsakis

Extend SCC construction to enable extra functionality

Do YOU feel like your SCC construction doesn't do enough? Then I have a patch for you! SCCs can now do *everything*! Well, almost.

This patch has been extracted from #123720. It specifically enhances
`Sccs` to allow tracking arbitrary commutative properties (think min/max mappings on nodes vs arbitrary closures) of strongly connected components, including
- reachable values (max/min)
- SCC-internal values (max/min)

This helps with among other things universe computation. We can now identify
SCC universes as a reasonably straightforward "find max/min" operation during SCC construction. This is also included in this patch.

It's also more or less zero-cost; don't use the new features, don't pay for them.

This commit also vastly extends the documentation of the SCCs module, which I had a very hard time following. It may or may not have gotten easier to read for someone else.

I believe this logic can also be used in leak check, but haven't checked. Ha. ha. Ha.
This commit is contained in:
bors 2024-06-12 23:15:33 +00:00
commit 8cf5101d77
5 changed files with 670 additions and 337 deletions

View File

@ -1,4 +1,4 @@
use rustc_data_structures::graph::scc::Sccs;
use crate::type_check::Locations;
use rustc_index::{IndexSlice, IndexVec};
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::ty::{RegionVid, TyCtxt, VarianceDiagInfo};
@ -6,8 +6,6 @@
use std::fmt;
use std::ops::Index;
use crate::type_check::Locations;
pub(crate) mod graph;
/// A set of NLL region constraints. These include "outlives"
@ -45,18 +43,6 @@ pub(crate) fn reverse_graph(&self, num_region_vars: usize) -> graph::ReverseCons
graph::ConstraintGraph::new(graph::Reverse, self, num_region_vars)
}
/// Computes cycles (SCCs) in the graph of regions. In particular,
/// find all regions R1, R2 such that R1: R2 and R2: R1 and group
/// them into an SCC, and find the relationships between SCCs.
pub(crate) fn compute_sccs(
&self,
constraint_graph: &graph::NormalConstraintGraph,
static_region: RegionVid,
) -> Sccs<RegionVid, ConstraintSccIndex> {
let region_graph = &constraint_graph.region_graph(self, static_region);
Sccs::new(region_graph)
}
pub(crate) fn outlives(
&self,
) -> &IndexSlice<OutlivesConstraintIndex, OutlivesConstraint<'tcx>> {

View File

@ -4,10 +4,10 @@
use rustc_data_structures::binary_search_util;
use rustc_data_structures::frozen::Frozen;
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_data_structures::graph::scc::Sccs;
use rustc_data_structures::graph::scc::{self, Sccs};
use rustc_errors::Diag;
use rustc_hir::def_id::CRATE_DEF_ID;
use rustc_index::{IndexSlice, IndexVec};
use rustc_index::IndexVec;
use rustc_infer::infer::outlives::test_type_match;
use rustc_infer::infer::region_constraints::{GenericKind, VarInfos, VerifyBound, VerifyIfEq};
use rustc_infer::infer::{InferCtxt, NllRegionVariableOrigin, RegionVariableOrigin};
@ -19,7 +19,7 @@
};
use rustc_middle::traits::ObligationCause;
use rustc_middle::traits::ObligationCauseCode;
use rustc_middle::ty::{self, RegionVid, Ty, TyCtxt, TypeFoldable};
use rustc_middle::ty::{self, RegionVid, Ty, TyCtxt, TypeFoldable, UniverseIndex};
use rustc_mir_dataflow::points::DenseLocationMap;
use rustc_span::Span;
@ -46,6 +46,97 @@
pub mod values;
pub type ConstraintSccs = Sccs<RegionVid, ConstraintSccIndex, RegionTracker>;
/// An annotation for region graph SCCs that tracks
/// the values of its elements.
#[derive(Copy, Debug, Clone)]
pub struct RegionTracker {
/// The largest universe of a placeholder reached from this SCC.
/// This includes placeholders within this SCC.
max_placeholder_universe_reached: UniverseIndex,
/// The smallest universe index reachable form the nodes of this SCC.
min_reachable_universe: UniverseIndex,
/// The representative Region Variable Id for this SCC. We prefer
/// placeholders over existentially quantified variables, otherwise
/// it's the one with the smallest Region Variable ID.
representative: RegionVid,
/// Is the current representative a placeholder?
representative_is_placeholder: bool,
/// Is the current representative existentially quantified?
representative_is_existential: bool,
}
impl scc::Annotation for RegionTracker {
fn merge_scc(mut self, mut other: Self) -> Self {
// Prefer any placeholder over any existential
if other.representative_is_placeholder && self.representative_is_existential {
other.merge_min_max_seen(&self);
return other;
}
if self.representative_is_placeholder && other.representative_is_existential
|| (self.representative <= other.representative)
{
self.merge_min_max_seen(&other);
return self;
}
other.merge_min_max_seen(&self);
other
}
fn merge_reached(mut self, other: Self) -> Self {
// No update to in-component values, only add seen values.
self.merge_min_max_seen(&other);
self
}
}
impl RegionTracker {
fn new(rvid: RegionVid, definition: &RegionDefinition<'_>) -> Self {
let (representative_is_placeholder, representative_is_existential) = match definition.origin
{
rustc_infer::infer::NllRegionVariableOrigin::FreeRegion => (false, false),
rustc_infer::infer::NllRegionVariableOrigin::Placeholder(_) => (true, false),
rustc_infer::infer::NllRegionVariableOrigin::Existential { .. } => (false, true),
};
let placeholder_universe =
if representative_is_placeholder { definition.universe } else { UniverseIndex::ROOT };
Self {
max_placeholder_universe_reached: placeholder_universe,
min_reachable_universe: definition.universe,
representative: rvid,
representative_is_placeholder,
representative_is_existential,
}
}
fn universe(self) -> UniverseIndex {
self.min_reachable_universe
}
fn merge_min_max_seen(&mut self, other: &Self) {
self.max_placeholder_universe_reached = std::cmp::max(
self.max_placeholder_universe_reached,
other.max_placeholder_universe_reached,
);
self.min_reachable_universe =
std::cmp::min(self.min_reachable_universe, other.min_reachable_universe);
}
/// Returns `true` if during the annotated SCC reaches a placeholder
/// with a universe larger than the smallest reachable one, `false` otherwise.
pub fn has_incompatible_universes(&self) -> bool {
self.universe().cannot_name(self.max_placeholder_universe_reached)
}
}
pub struct RegionInferenceContext<'tcx> {
pub var_infos: VarInfos,
@ -72,7 +163,7 @@ pub struct RegionInferenceContext<'tcx> {
/// The SCC computed from `constraints` and the constraint
/// graph. We have an edge from SCC A to SCC B if `A: B`. Used to
/// compute the values of each region.
constraint_sccs: Rc<Sccs<RegionVid, ConstraintSccIndex>>,
constraint_sccs: Rc<ConstraintSccs>,
/// Reverse of the SCC constraint graph -- i.e., an edge `A -> B` exists if
/// `B: A`. This is used to compute the universal regions that are required
@ -91,22 +182,6 @@ pub struct RegionInferenceContext<'tcx> {
/// Map universe indexes to information on why we created it.
universe_causes: FxIndexMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
/// Contains the minimum universe of any variable within the same
/// SCC. We will ensure that no SCC contains values that are not
/// visible from this index.
scc_universes: IndexVec<ConstraintSccIndex, ty::UniverseIndex>,
/// Contains the "representative" region of each SCC.
/// It is defined as the one with the minimal RegionVid, favoring
/// free regions, then placeholders, then existential regions.
///
/// It is a hacky way to manage checking regions for equality,
/// since we can 'canonicalize' each region to the representative
/// of its SCC and be sure that -- if they have the same repr --
/// they *must* be equal (though not having the same repr does not
/// mean they are unequal).
scc_representatives: IndexVec<ConstraintSccIndex, ty::RegionVid>,
/// The final inferred values of the region variables; we compute
/// one value per SCC. To get the value for any given *region*,
/// you first find which scc it is a part of.
@ -151,7 +226,7 @@ pub(crate) struct AppliedMemberConstraint {
}
#[derive(Debug)]
pub(crate) struct RegionDefinition<'tcx> {
pub struct RegionDefinition<'tcx> {
/// What kind of variable is this -- a free region? existential
/// variable? etc. (See the `NllRegionVariableOrigin` for more
/// info.)
@ -250,7 +325,7 @@ pub enum ExtraConstraintInfo {
}
#[instrument(skip(infcx, sccs), level = "debug")]
fn sccs_info<'tcx>(infcx: &BorrowckInferCtxt<'tcx>, sccs: Rc<Sccs<RegionVid, ConstraintSccIndex>>) {
fn sccs_info<'tcx>(infcx: &BorrowckInferCtxt<'tcx>, sccs: &ConstraintSccs) {
use crate::renumber::RegionCtxt;
let var_to_origin = infcx.reg_var_to_origin.borrow();
@ -264,7 +339,7 @@ fn sccs_info<'tcx>(infcx: &BorrowckInferCtxt<'tcx>, sccs: Rc<Sccs<RegionVid, Con
}
debug!("{}", reg_vars_to_origins_str);
let num_components = sccs.scc_data().ranges().len();
let num_components = sccs.num_sccs();
let mut components = vec![FxIndexSet::default(); num_components];
for (reg_var_idx, scc_idx) in sccs.scc_indices().iter().enumerate() {
@ -301,10 +376,11 @@ fn sccs_info<'tcx>(infcx: &BorrowckInferCtxt<'tcx>, sccs: Rc<Sccs<RegionVid, Con
let mut scc_node_to_edges = FxIndexMap::default();
for (scc_idx, repr) in components_representatives.iter() {
let edges_range = sccs.scc_data().ranges()[*scc_idx].clone();
let edges = &sccs.scc_data().all_successors()[edges_range];
let edge_representatives =
edges.iter().map(|scc_idx| components_representatives[scc_idx]).collect::<Vec<_>>();
let edge_representatives = sccs
.successors(*scc_idx)
.iter()
.map(|scc_idx| components_representatives[scc_idx])
.collect::<Vec<_>>();
scc_node_to_edges.insert((scc_idx, repr), edge_representatives);
}
@ -320,7 +396,7 @@ impl<'tcx> RegionInferenceContext<'tcx> {
/// The `outlives_constraints` and `type_tests` are an initial set
/// of constraints produced by the MIR type check.
pub(crate) fn new(
_infcx: &BorrowckInferCtxt<'tcx>,
infcx: &BorrowckInferCtxt<'tcx>,
var_infos: VarInfos,
universal_regions: Rc<UniversalRegions<'tcx>>,
placeholder_indices: Rc<PlaceholderIndices>,
@ -343,13 +419,20 @@ pub(crate) fn new(
.map(|info| RegionDefinition::new(info.universe, info.origin))
.collect();
let fr_static = universal_regions.fr_static;
let constraints = Frozen::freeze(outlives_constraints);
let constraint_graph = Frozen::freeze(constraints.graph(definitions.len()));
let fr_static = universal_regions.fr_static;
let constraint_sccs = Rc::new(constraints.compute_sccs(&constraint_graph, fr_static));
let constraint_sccs = {
let constraint_graph = constraints.graph(definitions.len());
let region_graph = &constraint_graph.region_graph(&constraints, fr_static);
let sccs = ConstraintSccs::new_with_annotation(&region_graph, |r| {
RegionTracker::new(r, &definitions[r])
});
Rc::new(sccs)
};
if cfg!(debug_assertions) {
sccs_info(_infcx, constraint_sccs.clone());
sccs_info(infcx, &constraint_sccs);
}
let mut scc_values =
@ -360,10 +443,6 @@ pub(crate) fn new(
scc_values.merge_liveness(scc, region, &liveness_constraints);
}
let scc_universes = Self::compute_scc_universes(&constraint_sccs, &definitions);
let scc_representatives = Self::compute_scc_representatives(&constraint_sccs, &definitions);
let member_constraints =
Rc::new(member_constraints_in.into_mapped(|r| constraint_sccs.scc(r)));
@ -378,8 +457,6 @@ pub(crate) fn new(
member_constraints,
member_constraints_applied: Vec::new(),
universe_causes,
scc_universes,
scc_representatives,
scc_values,
type_tests,
universal_regions,
@ -391,123 +468,6 @@ pub(crate) fn new(
result
}
/// Each SCC is the combination of many region variables which
/// have been equated. Therefore, we can associate a universe with
/// each SCC which is minimum of all the universes of its
/// constituent regions -- this is because whatever value the SCC
/// takes on must be a value that each of the regions within the
/// SCC could have as well. This implies that the SCC must have
/// the minimum, or narrowest, universe.
fn compute_scc_universes(
constraint_sccs: &Sccs<RegionVid, ConstraintSccIndex>,
definitions: &IndexSlice<RegionVid, RegionDefinition<'tcx>>,
) -> IndexVec<ConstraintSccIndex, ty::UniverseIndex> {
let num_sccs = constraint_sccs.num_sccs();
let mut scc_universes = IndexVec::from_elem_n(ty::UniverseIndex::MAX, num_sccs);
debug!("compute_scc_universes()");
// For each region R in universe U, ensure that the universe for the SCC
// that contains R is "no bigger" than U. This effectively sets the universe
// for each SCC to be the minimum of the regions within.
for (region_vid, region_definition) in definitions.iter_enumerated() {
let scc = constraint_sccs.scc(region_vid);
let scc_universe = &mut scc_universes[scc];
let scc_min = std::cmp::min(region_definition.universe, *scc_universe);
if scc_min != *scc_universe {
*scc_universe = scc_min;
debug!(
"compute_scc_universes: lowered universe of {scc:?} to {scc_min:?} \
because it contains {region_vid:?} in {region_universe:?}",
scc = scc,
scc_min = scc_min,
region_vid = region_vid,
region_universe = region_definition.universe,
);
}
}
// Walk each SCC `A` and `B` such that `A: B`
// and ensure that universe(A) can see universe(B).
//
// This serves to enforce the 'empty/placeholder' hierarchy
// (described in more detail on `RegionKind`):
//
// ```
// static -----+
// | |
// empty(U0) placeholder(U1)
// | /
// empty(U1)
// ```
//
// In particular, imagine we have variables R0 in U0 and R1
// created in U1, and constraints like this;
//
// ```
// R1: !1 // R1 outlives the placeholder in U1
// R1: R0 // R1 outlives R0
// ```
//
// Here, we wish for R1 to be `'static`, because it
// cannot outlive `placeholder(U1)` and `empty(U0)` any other way.
//
// Thanks to this loop, what happens is that the `R1: R0`
// constraint lowers the universe of `R1` to `U0`, which in turn
// means that the `R1: !1` constraint will (later) cause
// `R1` to become `'static`.
for scc_a in constraint_sccs.all_sccs() {
for &scc_b in constraint_sccs.successors(scc_a) {
let scc_universe_a = scc_universes[scc_a];
let scc_universe_b = scc_universes[scc_b];
let scc_universe_min = std::cmp::min(scc_universe_a, scc_universe_b);
if scc_universe_a != scc_universe_min {
scc_universes[scc_a] = scc_universe_min;
debug!(
"compute_scc_universes: lowered universe of {scc_a:?} to {scc_universe_min:?} \
because {scc_a:?}: {scc_b:?} and {scc_b:?} is in universe {scc_universe_b:?}",
scc_a = scc_a,
scc_b = scc_b,
scc_universe_min = scc_universe_min,
scc_universe_b = scc_universe_b
);
}
}
}
debug!("compute_scc_universes: scc_universe = {:#?}", scc_universes);
scc_universes
}
/// For each SCC, we compute a unique `RegionVid`. See the
/// `scc_representatives` field of `RegionInferenceContext` for
/// more details.
fn compute_scc_representatives(
constraints_scc: &Sccs<RegionVid, ConstraintSccIndex>,
definitions: &IndexSlice<RegionVid, RegionDefinition<'tcx>>,
) -> IndexVec<ConstraintSccIndex, ty::RegionVid> {
let num_sccs = constraints_scc.num_sccs();
let mut scc_representatives = IndexVec::from_elem_n(RegionVid::MAX, num_sccs);
// Iterate over all RegionVids *in-order* and pick the least RegionVid as the
// representative of its SCC. This naturally prefers free regions over others.
for (vid, def) in definitions.iter_enumerated() {
let repr = &mut scc_representatives[constraints_scc.scc(vid)];
if *repr == ty::RegionVid::MAX {
*repr = vid;
} else if matches!(def.origin, NllRegionVariableOrigin::Placeholder(_))
&& matches!(definitions[*repr].origin, NllRegionVariableOrigin::Existential { .. })
{
// Pick placeholders over existentials even if they have a greater RegionVid.
*repr = vid;
}
}
scc_representatives
}
/// Initializes the region variables for each universally
/// quantified region (lifetime parameter). The first N variables
/// always correspond to the regions appearing in the function
@ -528,12 +488,45 @@ fn compute_scc_representatives(
/// and (b) any universally quantified regions that it outlives,
/// which in this case is just itself. R1 (`'b`) in contrast also
/// outlives `'a` and hence contains R0 and R1.
///
/// This bit of logic also handles invalid universe relations
/// for higher-kinded types.
///
/// We Walk each SCC `A` and `B` such that `A: B`
/// and ensure that universe(A) can see universe(B).
///
/// This serves to enforce the 'empty/placeholder' hierarchy
/// (described in more detail on `RegionKind`):
///
/// ```ignore (illustrative)
/// static -----+
/// | |
/// empty(U0) placeholder(U1)
/// | /
/// empty(U1)
/// ```
///
/// In particular, imagine we have variables R0 in U0 and R1
/// created in U1, and constraints like this;
///
/// ```ignore (illustrative)
/// R1: !1 // R1 outlives the placeholder in U1
/// R1: R0 // R1 outlives R0
/// ```
///
/// Here, we wish for R1 to be `'static`, because it
/// cannot outlive `placeholder(U1)` and `empty(U0)` any other way.
///
/// Thanks to this loop, what happens is that the `R1: R0`
/// constraint has lowered the universe of `R1` to `U0`, which in turn
/// means that the `R1: !1` constraint here will cause
/// `R1` to become `'static`.
fn init_free_and_bound_regions(&mut self) {
// Update the names (if any)
// This iterator has unstable order but we collect it all into an IndexVec
for (external_name, variable) in self.universal_regions.named_universal_regions() {
debug!(
"init_universal_regions: region {:?} has external name {:?}",
"init_free_and_bound_regions: region {:?} has external name {:?}",
variable, external_name
);
self.definitions[variable].external_name = Some(external_name);
@ -559,7 +552,7 @@ fn init_free_and_bound_regions(&mut self) {
// its universe `ui` and its extensions. So we
// can't just add it into `scc` unless the
// universe of the scc can name this region.
let scc_universe = self.scc_universes[scc];
let scc_universe = self.scc_universe(scc);
if scc_universe.can_name(placeholder.universe) {
self.scc_values.add_element(scc, placeholder);
} else {
@ -640,8 +633,7 @@ pub(crate) fn placeholders_contained_in<'a>(
/// Returns access to the value of `r` for debugging purposes.
pub(crate) fn region_universe(&self, r: RegionVid) -> ty::UniverseIndex {
let scc = self.constraint_sccs.scc(r);
self.scc_universes[scc]
self.scc_universe(self.constraint_sccs.scc(r))
}
/// Once region solving has completed, this function will return the member constraints that
@ -737,8 +729,7 @@ fn propagate_constraints(&mut self) {
// SCC. For each SCC, we visit its successors and compute
// their values, then we union all those values to get our
// own.
let constraint_sccs = self.constraint_sccs.clone();
for scc in constraint_sccs.all_sccs() {
for scc in self.constraint_sccs.all_sccs() {
self.compute_value_for_scc(scc);
}
@ -817,20 +808,15 @@ fn apply_member_constraint(
// if one exists.
for c_r in &mut choice_regions {
let scc = self.constraint_sccs.scc(*c_r);
*c_r = self.scc_representatives[scc];
*c_r = self.scc_representative(scc);
}
// If the member region lives in a higher universe, we currently choose
// the most conservative option by leaving it unchanged.
if self.scc_universes[scc] != ty::UniverseIndex::ROOT {
if !self.constraint_sccs().annotation(scc).universe().is_root() {
return;
}
debug_assert!(
self.scc_values.placeholders_contained_in(scc).next().is_none(),
"scc {:?} in a member constraint has placeholder value: {:?}",
scc,
self.scc_values.region_value_str(scc),
);
// The existing value for `scc` is a lower-bound. This will
// consist of some set `{P} + {LB}` of points `{P}` and
@ -900,12 +886,13 @@ fn apply_member_constraint(
/// in `scc_a`. Used during constraint propagation, and only once
/// the value of `scc_b` has been computed.
fn universe_compatible(&self, scc_b: ConstraintSccIndex, scc_a: ConstraintSccIndex) -> bool {
let universe_a = self.scc_universes[scc_a];
let universe_a = self.constraint_sccs().annotation(scc_a).universe();
let universe_b = self.constraint_sccs().annotation(scc_b).universe();
// Quick check: if scc_b's declared universe is a subset of
// scc_a's declared universe (typically, both are ROOT), then
// it cannot contain any problematic universe elements.
if universe_a.can_name(self.scc_universes[scc_b]) {
if universe_a.can_name(universe_b) {
return true;
}
@ -1033,7 +1020,9 @@ fn try_promote_type_test(
debug!(
"lower_bound = {:?} r_scc={:?} universe={:?}",
lower_bound, r_scc, self.scc_universes[r_scc]
lower_bound,
r_scc,
self.constraint_sccs.annotation(r_scc).universe()
);
// If the type test requires that `T: 'a` where `'a` is a
@ -1321,7 +1310,7 @@ fn normalize_to_scc_representatives<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
tcx.fold_regions(value, |r, _db| {
let vid = self.to_region_vid(r);
let scc = self.constraint_sccs.scc(vid);
let repr = self.scc_representatives[scc];
let repr = self.scc_representative(scc);
ty::Region::new_var(tcx, repr)
})
}
@ -1547,6 +1536,11 @@ fn check_polonius_subset_errors(
}
}
/// The minimum universe of any variable reachable from this
/// SCC, inside or outside of it.
fn scc_universe(&self, scc: ConstraintSccIndex) -> UniverseIndex {
self.constraint_sccs().annotation(scc).universe()
}
/// Checks the final value for the free region `fr` to see if it
/// grew too large. In particular, examine what `end(X)` points
/// wound up in `fr`'s final value; for each `end(X)` where `X !=
@ -1566,8 +1560,7 @@ fn check_universal_region(
// Because this free region must be in the ROOT universe, we
// know it cannot contain any bound universes.
assert!(self.scc_universes[longer_fr_scc].is_root());
debug_assert!(self.scc_values.placeholders_contained_in(longer_fr_scc).next().is_none());
assert!(self.scc_universe(longer_fr_scc).is_root());
// Only check all of the relations for the main representative of each
// SCC, otherwise just check that we outlive said representative. This
@ -1575,7 +1568,7 @@ fn check_universal_region(
// closures.
// Note that the representative will be a universal region if there is
// one in this SCC, so we will always check the representative here.
let representative = self.scc_representatives[longer_fr_scc];
let representative = self.scc_representative(longer_fr_scc);
if representative != longer_fr {
if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
longer_fr,
@ -1796,16 +1789,14 @@ pub(crate) fn provides_universal_region(
/// `true` if `r1` cannot name that placeholder in its
/// value; otherwise, returns `false`.
pub(crate) fn cannot_name_placeholder(&self, r1: RegionVid, r2: RegionVid) -> bool {
debug!("cannot_name_value_of(r1={:?}, r2={:?})", r1, r2);
match self.definitions[r2].origin {
NllRegionVariableOrigin::Placeholder(placeholder) => {
let universe1 = self.definitions[r1].universe;
let r1_universe = self.definitions[r1].universe;
debug!(
"cannot_name_value_of: universe1={:?} placeholder={:?}",
universe1, placeholder
"cannot_name_value_of: universe1={r1_universe:?} placeholder={:?}",
placeholder
);
universe1.cannot_name(placeholder.universe)
r1_universe.cannot_name(placeholder.universe)
}
NllRegionVariableOrigin::FreeRegion | NllRegionVariableOrigin::Existential { .. } => {
@ -1835,6 +1826,7 @@ pub(crate) fn find_outlives_blame_span(
///
/// Returns: a series of constraints as well as the region `R`
/// that passed the target test.
#[instrument(skip(self, target_test), ret)]
pub(crate) fn find_constraint_paths_between_regions(
&self,
from_region: RegionVid,
@ -1932,7 +1924,7 @@ pub(crate) fn find_constraint_paths_between_regions(
#[instrument(skip(self), level = "trace", ret)]
pub(crate) fn find_sub_region_live_at(&self, fr1: RegionVid, location: Location) -> RegionVid {
trace!(scc = ?self.constraint_sccs.scc(fr1));
trace!(universe = ?self.scc_universes[self.constraint_sccs.scc(fr1)]);
trace!(universe = ?self.region_universe(fr1));
self.find_constraint_paths_between_regions(fr1, |r| {
// First look for some `r` such that `fr1: r` and `r` is live at `location`
trace!(?r, liveness_constraints=?self.liveness_constraints.pretty_print_live_points(r));
@ -2252,8 +2244,8 @@ pub(crate) fn find_loop_terminator_location(
/// This can be used to quickly under-approximate the regions which are equal to each other
/// and their relative orderings.
// This is `pub` because it's used by unstable external borrowck data users, see `consumers.rs`.
pub fn constraint_sccs(&self) -> &Sccs<RegionVid, ConstraintSccIndex> {
self.constraint_sccs.as_ref()
pub fn constraint_sccs(&self) -> &ConstraintSccs {
&self.constraint_sccs
}
/// Access to the region graph, built from the outlives constraints.
@ -2282,6 +2274,18 @@ pub(crate) fn is_loan_live_at(&self, loan_idx: BorrowIndex, location: Location)
let point = self.liveness_constraints.point_from_location(location);
self.liveness_constraints.is_loan_live_at(loan_idx, point)
}
/// Returns the representative `RegionVid` for a given SCC.
/// See `RegionTracker` for how a region variable ID is chosen.
///
/// It is a hacky way to manage checking regions for equality,
/// since we can 'canonicalize' each region to the representative
/// of its SCC and be sure that -- if they have the same repr --
/// they *must* be equal (though not having the same repr does not
/// mean they are unequal).
fn scc_representative(&self, scc: ConstraintSccIndex) -> RegionVid {
self.constraint_sccs.annotation(scc).representative
}
}
impl<'tcx> RegionDefinition<'tcx> {

View File

@ -85,7 +85,7 @@ pub(crate) fn infer_opaque_types(
// Use the SCC representative instead of directly using `region`.
// See [rustc-dev-guide chapter] § "Strict lifetime equality".
let scc = self.constraint_sccs.scc(region.as_var());
let vid = self.scc_representatives[scc];
let vid = self.scc_representative(scc);
let named = match self.definitions[vid].origin {
// Iterate over all universal regions in a consistent order and find the
// *first* equal region. This makes sure that equal lifetimes will have
@ -213,7 +213,7 @@ pub(crate) fn name_regions<T>(&self, tcx: TyCtxt<'tcx>, ty: T) -> T
let scc = self.constraint_sccs.scc(vid);
// Special handling of higher-ranked regions.
if !self.scc_universes[scc].is_root() {
if !self.scc_universe(scc).is_root() {
match self.scc_values.placeholders_contained_in(scc).enumerate().last() {
// If the region contains a single placeholder then they're equal.
Some((0, placeholder)) => {

View File

@ -4,54 +4,121 @@
//! node in the graph. This uses [Tarjan's algorithm](
//! https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm)
//! that completes in *O*(*n*) time.
//! Optionally, also annotate the SCC nodes with some commutative data.
//! Typical examples would include: minimum element in SCC, maximum element
//! reachable from it, etc.
use crate::fx::FxHashSet;
use crate::graph::vec_graph::VecGraph;
use crate::graph::{DirectedGraph, NumEdges, Successors};
use rustc_index::{Idx, IndexSlice, IndexVec};
use std::fmt::Debug;
use std::ops::Range;
use tracing::{debug, instrument};
#[cfg(test)]
mod tests;
/// An annotation for an SCC. This can be a representative,
/// the max/min element of the SCC, or all of the above.
///
/// Concretely, the both merge operations must commute, e.g. where `merge`
/// is `merge_scc` and `merge_reached`: `a.merge(b) == b.merge(a)`
///
/// In general, what you want is probably always min/max according
/// to some ordering, potentially with side constraints (min x such
/// that P holds).
pub trait Annotation: Debug + Copy {
/// Merge two existing annotations into one during
/// path compression.o
fn merge_scc(self, other: Self) -> Self;
/// Merge a successor into this annotation.
fn merge_reached(self, other: Self) -> Self;
fn update_scc(&mut self, other: Self) {
*self = self.merge_scc(other)
}
fn update_reachable(&mut self, other: Self) {
*self = self.merge_reached(other)
}
}
/// The empty annotation, which does nothing.
impl Annotation for () {
fn merge_reached(self, _other: Self) -> Self {
()
}
fn merge_scc(self, _other: Self) -> Self {
()
}
}
/// Strongly connected components (SCC) of a graph. The type `N` is
/// the index type for the graph nodes and `S` is the index type for
/// the SCCs. We can map from each node to the SCC that it
/// participates in, and we also have the successors of each SCC.
pub struct Sccs<N: Idx, S: Idx> {
pub struct Sccs<N: Idx, S: Idx, A: Annotation = ()> {
/// For each node, what is the SCC index of the SCC to which it
/// belongs.
scc_indices: IndexVec<N, S>,
/// Data about each SCC.
scc_data: SccData<S>,
/// Data about all the SCCs.
scc_data: SccData<S, A>,
}
pub struct SccData<S: Idx> {
/// For each SCC, the range of `all_successors` where its
/// Information about an invidividual SCC node.
struct SccDetails<A: Annotation> {
/// For this SCC, the range of `all_successors` where its
/// successors can be found.
ranges: IndexVec<S, Range<usize>>,
range: Range<usize>,
/// User-specified metadata about the SCC.
annotation: A,
}
// The name of this struct should discourage you from making it public and leaking
// its representation. This message was left here by one who came before you,
// who learnt the hard way that making even small changes in representation
// is difficult when it's publicly inspectable.
//
// Obey the law of Demeter!
struct SccData<S: Idx, A: Annotation> {
/// Maps SCC indices to their metadata, including
/// offsets into `all_successors`.
scc_details: IndexVec<S, SccDetails<A>>,
/// Contains the successors for all the Sccs, concatenated. The
/// range of indices corresponding to a given SCC is found in its
/// SccData.
/// `scc_details.range`.
all_successors: Vec<S>,
}
impl<N: Idx, S: Idx + Ord> Sccs<N, S> {
impl<N: Idx, S: Idx + Ord> Sccs<N, S, ()> {
/// Compute SCCs without annotations.
pub fn new(graph: &impl Successors<Node = N>) -> Self {
SccsConstruction::construct(graph)
Self::new_with_annotation(graph, |_| ())
}
}
impl<N: Idx, S: Idx + Ord, A: Annotation> Sccs<N, S, A> {
/// Compute SCCs and annotate them with a user-supplied annotation
pub fn new_with_annotation<F: Fn(N) -> A>(
graph: &impl Successors<Node = N>,
to_annotation: F,
) -> Self {
SccsConstruction::construct(graph, to_annotation)
}
pub fn annotation(&self, scc: S) -> A {
self.scc_data.annotation(scc)
}
pub fn scc_indices(&self) -> &IndexSlice<N, S> {
&self.scc_indices
}
pub fn scc_data(&self) -> &SccData<S> {
&self.scc_data
}
/// Returns the number of SCCs in the graph.
pub fn num_sccs(&self) -> usize {
self.scc_data.len()
@ -90,7 +157,7 @@ pub fn reverse(&self) -> VecGraph<S> {
}
}
impl<N: Idx, S: Idx + Ord> DirectedGraph for Sccs<N, S> {
impl<N: Idx, S: Idx + Ord, A: Annotation> DirectedGraph for Sccs<N, S, A> {
type Node = S;
fn num_nodes(&self) -> usize {
@ -98,43 +165,33 @@ fn num_nodes(&self) -> usize {
}
}
impl<N: Idx, S: Idx + Ord> NumEdges for Sccs<N, S> {
impl<N: Idx, S: Idx + Ord, A: Annotation> NumEdges for Sccs<N, S, A> {
fn num_edges(&self) -> usize {
self.scc_data.all_successors.len()
}
}
impl<N: Idx, S: Idx + Ord> Successors for Sccs<N, S> {
impl<N: Idx, S: Idx + Ord, A: Annotation> Successors for Sccs<N, S, A> {
fn successors(&self, node: S) -> impl Iterator<Item = Self::Node> {
self.successors(node).iter().cloned()
}
}
impl<S: Idx> SccData<S> {
impl<S: Idx, A: Annotation> SccData<S, A> {
/// Number of SCCs,
fn len(&self) -> usize {
self.ranges.len()
}
pub fn ranges(&self) -> &IndexSlice<S, Range<usize>> {
&self.ranges
}
pub fn all_successors(&self) -> &Vec<S> {
&self.all_successors
self.scc_details.len()
}
/// Returns the successors of the given SCC.
fn successors(&self, scc: S) -> &[S] {
// Annoyingly, `range` does not implement `Copy`, so we have
// to do `range.start..range.end`:
let range = &self.ranges[scc];
&self.all_successors[range.start..range.end]
&self.all_successors[self.scc_details[scc].range.clone()]
}
/// Creates a new SCC with `successors` as its successors and
/// the maximum weight of its internal nodes `scc_max_weight` and
/// returns the resulting index.
fn create_scc(&mut self, successors: impl IntoIterator<Item = S>) -> S {
fn create_scc(&mut self, successors: impl IntoIterator<Item = S>, annotation: A) -> S {
// Store the successors on `scc_successors_vec`, remembering
// the range of indices.
let all_successors_start = self.all_successors.len();
@ -142,22 +199,35 @@ fn create_scc(&mut self, successors: impl IntoIterator<Item = S>) -> S {
let all_successors_end = self.all_successors.len();
debug!(
"create_scc({:?}) successors={:?}",
self.ranges.len(),
"create_scc({:?}) successors={:?}, annotation={:?}",
self.len(),
&self.all_successors[all_successors_start..all_successors_end],
annotation
);
self.ranges.push(all_successors_start..all_successors_end)
let range = all_successors_start..all_successors_end;
let metadata = SccDetails { range, annotation };
self.scc_details.push(metadata)
}
fn annotation(&self, scc: S) -> A {
self.scc_details[scc].annotation
}
}
struct SccsConstruction<'c, G: DirectedGraph + Successors, S: Idx> {
struct SccsConstruction<'c, G, S, A, F>
where
G: DirectedGraph + Successors,
S: Idx,
A: Annotation,
F: Fn(G::Node) -> A,
{
graph: &'c G,
/// The state of each node; used during walk to record the stack
/// and after walk to record what cycle each node ended up being
/// in.
node_states: IndexVec<G::Node, NodeState<G::Node, S>>,
node_states: IndexVec<G::Node, NodeState<G::Node, S, A>>,
/// The stack of nodes that we are visiting as part of the DFS.
node_stack: Vec<G::Node>,
@ -174,26 +244,34 @@ struct SccsConstruction<'c, G: DirectedGraph + Successors, S: Idx> {
/// around between successors to amortize memory allocation costs.
duplicate_set: FxHashSet<S>,
scc_data: SccData<S>,
scc_data: SccData<S, A>,
/// A function that constructs an initial SCC annotation
/// out of a single node.
to_annotation: F,
}
#[derive(Copy, Clone, Debug)]
enum NodeState<N, S> {
enum NodeState<N, S, A> {
/// This node has not yet been visited as part of the DFS.
///
/// After SCC construction is complete, this state ought to be
/// impossible.
NotVisited,
/// This node is currently being walk as part of our DFS. It is on
/// the stack at the depth `depth`.
/// This node is currently being walked as part of our DFS. It is on
/// the stack at the depth `depth` and its current annotation is
/// `annotation`.
///
/// After SCC construction is complete, this state ought to be
/// impossible.
BeingVisited { depth: usize },
BeingVisited { depth: usize, annotation: A },
/// Indicates that this node is a member of the given cycle.
InCycle { scc_index: S },
/// Indicates that this node is a member of the given cycle where
/// the merged annotation is `annotation`.
/// Note that an SCC can have several cycles, so its final annotation
/// is the merged value of all its member annotations.
InCycle { scc_index: S, annotation: A },
/// Indicates that this node is a member of whatever cycle
/// `parent` is a member of. This state is transient: whenever we
@ -203,16 +281,27 @@ enum NodeState<N, S> {
InCycleWith { parent: N },
}
/// The state of walking a given node.
#[derive(Copy, Clone, Debug)]
enum WalkReturn<S> {
Cycle { min_depth: usize },
Complete { scc_index: S },
enum WalkReturn<S, A> {
/// The walk found a cycle, but the entire component is not known to have
/// been fully walked yet. We only know the minimum depth of this
/// component in a minimum spanning tree of the graph. This component
/// is tentatively represented by the state of the first node of this
/// cycle we met, which is at `min_depth`.
Cycle { min_depth: usize, annotation: A },
/// The SCC and everything reachable from it have been fully walked.
/// At this point we know what is inside the SCC as we have visited every
/// node reachable from it. The SCC can now be fully represented by its ID.
Complete { scc_index: S, annotation: A },
}
impl<'c, G, S> SccsConstruction<'c, G, S>
impl<'c, G, S, A, F> SccsConstruction<'c, G, S, A, F>
where
G: DirectedGraph + Successors,
S: Idx,
F: Fn(G::Node) -> A,
A: Annotation,
{
/// Identifies SCCs in the graph `G` and computes the resulting
/// DAG. This uses a variant of [Tarjan's
@ -225,8 +314,10 @@ impl<'c, G, S> SccsConstruction<'c, G, S>
/// D' (i.e., D' < D), we know that N, N', and all nodes in
/// between them on the stack are part of an SCC.
///
/// Additionally, we keep track of a current annotation of the SCC.
///
/// [wikipedia]: https://bit.ly/2EZIx84
fn construct(graph: &'c G) -> Sccs<G::Node, S> {
fn construct(graph: &'c G, to_annotation: F) -> Sccs<G::Node, S, A> {
let num_nodes = graph.num_nodes();
let mut this = Self {
@ -234,15 +325,16 @@ fn construct(graph: &'c G) -> Sccs<G::Node, S> {
node_states: IndexVec::from_elem_n(NodeState::NotVisited, num_nodes),
node_stack: Vec::with_capacity(num_nodes),
successors_stack: Vec::new(),
scc_data: SccData { ranges: IndexVec::new(), all_successors: Vec::new() },
scc_data: SccData { scc_details: IndexVec::new(), all_successors: Vec::new() },
duplicate_set: FxHashSet::default(),
to_annotation,
};
let scc_indices = (0..num_nodes)
.map(G::Node::new)
.map(|node| match this.start_walk_from(node) {
WalkReturn::Complete { scc_index } => scc_index,
WalkReturn::Cycle { min_depth } => {
WalkReturn::Complete { scc_index, .. } => scc_index,
WalkReturn::Cycle { min_depth, .. } => {
panic!("`start_walk_node({node:?})` returned cycle with depth {min_depth:?}")
}
})
@ -251,12 +343,8 @@ fn construct(graph: &'c G) -> Sccs<G::Node, S> {
Sccs { scc_indices, scc_data: this.scc_data }
}
fn start_walk_from(&mut self, node: G::Node) -> WalkReturn<S> {
if let Some(result) = self.inspect_node(node) {
result
} else {
self.walk_unvisited_node(node)
}
fn start_walk_from(&mut self, node: G::Node) -> WalkReturn<S, A> {
self.inspect_node(node).unwrap_or_else(|| self.walk_unvisited_node(node))
}
/// Inspect a node during the DFS. We first examine its current
@ -271,11 +359,15 @@ fn start_walk_from(&mut self, node: G::Node) -> WalkReturn<S> {
/// Otherwise, we are looking at a node that has already been
/// completely visited. We therefore return `WalkReturn::Complete`
/// with its associated SCC index.
fn inspect_node(&mut self, node: G::Node) -> Option<WalkReturn<S>> {
fn inspect_node(&mut self, node: G::Node) -> Option<WalkReturn<S, A>> {
Some(match self.find_state(node) {
NodeState::InCycle { scc_index } => WalkReturn::Complete { scc_index },
NodeState::InCycle { scc_index, annotation } => {
WalkReturn::Complete { scc_index, annotation }
}
NodeState::BeingVisited { depth: min_depth } => WalkReturn::Cycle { min_depth },
NodeState::BeingVisited { depth: min_depth, annotation } => {
WalkReturn::Cycle { min_depth, annotation }
}
NodeState::NotVisited => return None,
@ -290,7 +382,7 @@ fn inspect_node(&mut self, node: G::Node) -> Option<WalkReturn<S>> {
/// of `r2` (and updates `r` to reflect current result). This is
/// basically the "find" part of a standard union-find algorithm
/// (with path compression).
fn find_state(&mut self, mut node: G::Node) -> NodeState<G::Node, S> {
fn find_state(&mut self, mut node: G::Node) -> NodeState<G::Node, S, A> {
// To avoid recursion we temporarily reuse the `parent` of each
// InCycleWith link to encode a downwards link while compressing
// the path. After we have found the root or deepest node being
@ -306,24 +398,40 @@ fn find_state(&mut self, mut node: G::Node) -> NodeState<G::Node, S> {
// found the initial self-loop.
let mut previous_node = node;
// Ultimately assigned by the parent when following
// Ultimately propagated to all the transitive parents when following
// `InCycleWith` upwards.
let node_state = loop {
debug!("find_state(r = {:?} in state {:?})", node, self.node_states[node]);
match self.node_states[node] {
NodeState::InCycle { scc_index } => break NodeState::InCycle { scc_index },
NodeState::BeingVisited { depth } => break NodeState::BeingVisited { depth },
NodeState::NotVisited => break NodeState::NotVisited,
NodeState::InCycleWith { parent } => {
// We test this, to be extremely sure that we never
// ever break our termination condition for the
// reverse iteration loop.
assert!(node != parent, "Node can not be in cycle with itself");
// Store the previous node as an inverted list link
self.node_states[node] = NodeState::InCycleWith { parent: previous_node };
// Update to parent node.
previous_node = node;
node = parent;
// This loop performs the downward link encoding mentioned above. Details below!
// Note that there are two different states being assigned: the root state, and
// a potentially derived version of the root state for non-root nodes in the chain.
let (root_state, assigned_state) = {
loop {
debug!("find_state(r = {node:?} in state {:?})", self.node_states[node]);
match self.node_states[node] {
// This must have been the first and only state since it is unexplored*;
// no update needed! * Unless there is a bug :')
s @ NodeState::NotVisited => return s,
// We are in a completely discovered SCC; every node on our path is in that SCC:
s @ NodeState::InCycle { .. } => break (s, s),
// The Interesting Third Base Case: we are a path back to a root node
// still being explored. Now we need that node to keep its state and
// every other node to be recorded as being in whatever component that
// ends up in.
s @ NodeState::BeingVisited { depth, .. } => {
break (s, NodeState::InCycleWith { parent: self.node_stack[depth] });
}
// We are not at the head of a path; keep compressing it!
NodeState::InCycleWith { parent } => {
// We test this, to be extremely sure that we never
// ever break our termination condition for the
// reverse iteration loop.
assert!(node != parent, "Node can not be in cycle with itself");
// Store the previous node as an inverted list link
self.node_states[node] = NodeState::InCycleWith { parent: previous_node };
// Update to parent node.
previous_node = node;
node = parent;
}
}
}
};
@ -365,10 +473,14 @@ fn find_state(&mut self, mut node: G::Node) -> NodeState<G::Node, S> {
// Move backwards until we found the node where we started. We
// will know when we hit the state where previous_node == node.
loop {
// Back at the beginning, we can return.
// Back at the beginning, we can return. Note that we return the root state.
// This is becuse for components being explored, we would otherwise get a
// `node_state[n] = InCycleWith{ parent: n }` and that's wrong.
if previous_node == node {
return node_state;
return root_state;
}
debug!("Compressing {node:?} down to {previous_node:?} with state {assigned_state:?}");
// Update to previous node in the link.
match self.node_states[previous_node] {
NodeState::InCycleWith { parent: previous } => {
@ -376,34 +488,14 @@ fn find_state(&mut self, mut node: G::Node) -> NodeState<G::Node, S> {
previous_node = previous;
}
// Only InCycleWith nodes were added to the reverse linked list.
other => panic!("Invalid previous link while compressing cycle: {other:?}"),
other => unreachable!("Invalid previous link while compressing cycle: {other:?}"),
}
debug!("find_state: parent_state = {:?}", node_state);
// Update the node state from the parent state. The assigned
// state is actually a loop invariant but it will only be
// evaluated if there is at least one backlink to follow.
// Fully trusting llvm here to find this loop optimization.
match node_state {
// Path compression, make current node point to the same root.
NodeState::InCycle { .. } => {
self.node_states[node] = node_state;
}
// Still visiting nodes, compress to cycle to the node
// at that depth.
NodeState::BeingVisited { depth } => {
self.node_states[node] =
NodeState::InCycleWith { parent: self.node_stack[depth] };
}
// These are never allowed as parent nodes. InCycleWith
// should have been followed to a real parent and
// NotVisited can not be part of a cycle since it should
// have instead gotten explored.
NodeState::NotVisited | NodeState::InCycleWith { .. } => {
panic!("invalid parent state: {node_state:?}")
}
}
// Update the node state to the (potentially derived) state.
// If the root is still being explored, this is
// `InCycleWith{ parent: <root node>}`, otherwise
// `assigned_state == root_state`.
self.node_states[node] = assigned_state;
}
}
@ -413,30 +505,36 @@ fn find_state(&mut self, mut node: G::Node) -> NodeState<G::Node, S> {
/// caller decide avoids mutual recursion between the two methods and allows
/// us to maintain an allocated stack for nodes on the path between calls.
#[instrument(skip(self, initial), level = "debug")]
fn walk_unvisited_node(&mut self, initial: G::Node) -> WalkReturn<S> {
struct VisitingNodeFrame<G: DirectedGraph, Successors> {
fn walk_unvisited_node(&mut self, initial: G::Node) -> WalkReturn<S, A> {
debug!("Walk unvisited node: {initial:?}");
struct VisitingNodeFrame<G: DirectedGraph, Successors, A> {
node: G::Node,
iter: Option<Successors>,
successors: Option<Successors>,
depth: usize,
min_depth: usize,
successors_len: usize,
min_cycle_root: G::Node,
successor_node: G::Node,
/// The annotation for the SCC starting in `node`. It may or may
/// not contain other nodes.
current_component_annotation: A,
}
// Move the stack to a local variable. We want to utilize the existing allocation and
// mutably borrow it without borrowing self at the same time.
let mut successors_stack = core::mem::take(&mut self.successors_stack);
debug_assert_eq!(successors_stack.len(), 0);
let mut stack: Vec<VisitingNodeFrame<G, _>> = vec![VisitingNodeFrame {
let mut stack: Vec<VisitingNodeFrame<G, _, _>> = vec![VisitingNodeFrame {
node: initial,
depth: 0,
min_depth: 0,
iter: None,
successors: None,
successors_len: 0,
min_cycle_root: initial,
successor_node: initial,
current_component_annotation: (self.to_annotation)(initial),
}];
let mut return_value = None;
@ -445,18 +543,26 @@ struct VisitingNodeFrame<G: DirectedGraph, Successors> {
let VisitingNodeFrame {
node,
depth,
iter,
successors,
successors_len,
min_depth,
min_cycle_root,
successor_node,
current_component_annotation,
} = frame;
let node = *node;
let depth = *depth;
let successors = match iter {
Some(iter) => iter,
// node is definitely in the current component, add it to the annotation.
if node != initial {
current_component_annotation.update_scc((self.to_annotation)(node));
}
debug!(
"Visiting {node:?} at depth {depth:?}, annotation: {current_component_annotation:?}"
);
let successors = match successors {
Some(successors) => successors,
None => {
// This None marks that we still have the initialize this node's frame.
debug!(?depth, ?node);
@ -464,7 +570,10 @@ struct VisitingNodeFrame<G: DirectedGraph, Successors> {
debug_assert!(matches!(self.node_states[node], NodeState::NotVisited));
// Push `node` onto the stack.
self.node_states[node] = NodeState::BeingVisited { depth };
self.node_states[node] = NodeState::BeingVisited {
depth,
annotation: *current_component_annotation,
};
self.node_stack.push(node);
// Walk each successor of the node, looking to see if any of
@ -472,11 +581,11 @@ struct VisitingNodeFrame<G: DirectedGraph, Successors> {
// so, that means they can also reach us.
*successors_len = successors_stack.len();
// Set and return a reference, this is currently empty.
iter.get_or_insert(self.graph.successors(node))
successors.get_or_insert(self.graph.successors(node))
}
};
// Now that iter is initialized, this is a constant for this frame.
// Now that the successors iterator is initialized, this is a constant for this frame.
let successors_len = *successors_len;
// Construct iterators for the nodes and walk results. There are two cases:
@ -489,10 +598,17 @@ struct VisitingNodeFrame<G: DirectedGraph, Successors> {
debug!(?node, ?successor_node);
(successor_node, self.inspect_node(successor_node))
});
for (successor_node, walk) in returned_walk.chain(successor_walk) {
match walk {
Some(WalkReturn::Cycle { min_depth: successor_min_depth }) => {
// The starting node `node` leads to a cycle whose earliest node,
// `successor_node`, is at `min_depth`. There may be more cycles.
Some(WalkReturn::Cycle {
min_depth: successor_min_depth,
annotation: successor_annotation,
}) => {
debug!(
"Cycle found from {node:?}, minimum depth: {successor_min_depth:?}, annotation: {successor_annotation:?}"
);
// Track the minimum depth we can reach.
assert!(successor_min_depth <= depth);
if successor_min_depth < *min_depth {
@ -500,41 +616,56 @@ struct VisitingNodeFrame<G: DirectedGraph, Successors> {
*min_depth = successor_min_depth;
*min_cycle_root = successor_node;
}
current_component_annotation.update_scc(successor_annotation);
}
Some(WalkReturn::Complete { scc_index: successor_scc_index }) => {
// The starting node `node` is succeeded by a fully identified SCC
// which is now added to the set under `scc_index`.
Some(WalkReturn::Complete {
scc_index: successor_scc_index,
annotation: successor_annotation,
}) => {
debug!(
"Complete; {node:?} is root of complete-visited SCC idx {successor_scc_index:?} with annotation {successor_annotation:?}"
);
// Push the completed SCC indices onto
// the `successors_stack` for later.
debug!(?node, ?successor_scc_index);
successors_stack.push(successor_scc_index);
current_component_annotation.update_reachable(successor_annotation);
}
// `node` has no more (direct) successors; search recursively.
None => {
let depth = depth + 1;
debug!("Recursing down into {successor_node:?} at depth {depth:?}");
debug!(?depth, ?successor_node);
// Remember which node the return value will come from.
frame.successor_node = successor_node;
// Start a new stack frame the step into it.
// Start a new stack frame, then step into it.
stack.push(VisitingNodeFrame {
node: successor_node,
depth,
iter: None,
successors: None,
successors_len: 0,
min_depth: depth,
min_cycle_root: successor_node,
successor_node,
current_component_annotation: (self.to_annotation)(successor_node),
});
continue 'recurse;
}
}
}
debug!("Finished walk from {node:?} with annotation: {current_component_annotation:?}");
// Completed walk, remove `node` from the stack.
let r = self.node_stack.pop();
debug_assert_eq!(r, Some(node));
// Remove the frame, it's done.
let frame = stack.pop().unwrap();
let current_component_annotation = frame.current_component_annotation;
debug_assert_eq!(frame.node, node);
// If `min_depth == depth`, then we are the root of the
// cycle: we can't reach anyone further down the stack.
@ -543,6 +674,8 @@ struct VisitingNodeFrame<G: DirectedGraph, Successors> {
// We return one frame at a time so there can't be another return value.
debug_assert!(return_value.is_none());
return_value = Some(if frame.min_depth == depth {
// We are at the head of the component.
// Note that successor stack may have duplicates, so we
// want to remove those:
let deduplicated_successors = {
@ -552,15 +685,25 @@ struct VisitingNodeFrame<G: DirectedGraph, Successors> {
.drain(successors_len..)
.filter(move |&i| duplicate_set.insert(i))
};
let scc_index = self.scc_data.create_scc(deduplicated_successors);
self.node_states[node] = NodeState::InCycle { scc_index };
WalkReturn::Complete { scc_index }
debug!("Creating SCC rooted in {node:?} with successor {:?}", frame.successor_node);
let scc_index =
self.scc_data.create_scc(deduplicated_successors, current_component_annotation);
self.node_states[node] =
NodeState::InCycle { scc_index, annotation: current_component_annotation };
WalkReturn::Complete { scc_index, annotation: current_component_annotation }
} else {
// We are not the head of the cycle. Return back to our
// caller. They will take ownership of the
// `self.successors` data that we pushed.
self.node_states[node] = NodeState::InCycleWith { parent: frame.min_cycle_root };
WalkReturn::Cycle { min_depth: frame.min_depth }
WalkReturn::Cycle {
min_depth: frame.min_depth,
annotation: current_component_annotation,
}
});
}

View File

@ -3,10 +3,53 @@
use super::*;
use crate::graph::tests::TestGraph;
#[derive(Copy, Clone, Debug)]
struct MaxReached(usize);
type UsizeSccs = Sccs<usize, usize, ()>;
type MaxReachedSccs = Sccs<usize, usize, MaxReached>;
impl Annotation for MaxReached {
fn merge_scc(self, other: Self) -> Self {
Self(std::cmp::max(other.0, self.0))
}
fn merge_reached(self, other: Self) -> Self {
self.merge_scc(other)
}
}
impl PartialEq<usize> for MaxReached {
fn eq(&self, other: &usize) -> bool {
&self.0 == other
}
}
impl MaxReached {
fn from_usize(nr: usize) -> Self {
Self(nr)
}
}
#[derive(Copy, Clone, Debug)]
struct MinMaxIn {
min: usize,
max: usize,
}
impl Annotation for MinMaxIn {
fn merge_scc(self, other: Self) -> Self {
Self { min: std::cmp::min(self.min, other.min), max: std::cmp::max(self.max, other.max) }
}
fn merge_reached(self, _other: Self) -> Self {
self
}
}
#[test]
fn diamond() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (2, 3)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 4);
assert_eq!(sccs.num_sccs(), 4);
}
@ -34,7 +77,7 @@ fn test_big_scc() {
+-- 2 <--+
*/
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (1, 3), (2, 0), (3, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 1);
}
@ -50,7 +93,7 @@ fn test_three_sccs() {
+-- 2 <--+
*/
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (2, 1), (3, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 3);
assert_eq!(sccs.scc(0), 1);
assert_eq!(sccs.scc(1), 0);
@ -106,7 +149,7 @@ fn test_find_state_2() {
// 2 InCycleWith { 1 }
// 3 InCycleWith { 0 }
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 1);
assert_eq!(sccs.scc(0), 0);
assert_eq!(sccs.scc(1), 0);
@ -130,7 +173,7 @@ fn test_find_state_3() {
*/
let graph =
TestGraph::new(0, &[(0, 1), (0, 4), (1, 2), (1, 3), (2, 1), (3, 0), (4, 2), (5, 2)]);
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 2);
assert_eq!(sccs.scc(0), 0);
assert_eq!(sccs.scc(1), 0);
@ -165,7 +208,7 @@ fn test_deep_linear() {
nodes.push((i - 1, i));
}
let graph = TestGraph::new(0, nodes.as_slice());
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), NR_NODES);
assert_eq!(sccs.scc(0), NR_NODES - 1);
assert_eq!(sccs.scc(NR_NODES - 1), 0);
@ -210,7 +253,164 @@ fn make_4_clique(slice: &mut [(usize, usize)], base: usize) {
graph[21] = (7, 4);
let graph = TestGraph::new(0, &graph[..]);
b.iter(|| {
let sccs: Sccs<_, usize> = Sccs::new(&graph);
let sccs: UsizeSccs = Sccs::new(&graph);
assert_eq!(sccs.num_sccs(), 3);
});
}
#[test]
fn test_max_self_loop() {
let graph = TestGraph::new(0, &[(0, 0)]);
let sccs: MaxReachedSccs =
Sccs::new_with_annotation(&graph, |n| if n == 0 { MaxReached(17) } else { MaxReached(0) });
assert_eq!(sccs.annotation(0), 17);
}
#[test]
fn test_max_branch() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (2, 4)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, MaxReached::from_usize);
assert_eq!(sccs.annotation(sccs.scc(0)), 4);
assert_eq!(sccs.annotation(sccs.scc(1)), 3);
assert_eq!(sccs.annotation(sccs.scc(2)), 4);
}
#[test]
fn test_single_cycle_max() {
let graph = TestGraph::new(0, &[(0, 2), (2, 3), (2, 4), (4, 1), (1, 2)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, MaxReached::from_usize);
assert_eq!(sccs.annotation(sccs.scc(2)), 4);
assert_eq!(sccs.annotation(sccs.scc(0)), 4);
}
#[test]
fn test_simple_cycle_max() {
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (2, 0)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, MaxReached::from_usize);
assert_eq!(sccs.num_sccs(), 1);
}
#[test]
fn test_double_cycle_max() {
let graph =
TestGraph::new(0, &[(0, 1), (1, 2), (1, 4), (2, 3), (2, 4), (3, 5), (4, 1), (5, 4)]);
let sccs: MaxReachedSccs =
Sccs::new_with_annotation(&graph, |n| if n == 5 { MaxReached(2) } else { MaxReached(1) });
assert_eq!(sccs.annotation(sccs.scc(0)).0, 2);
}
#[test]
fn test_bug_minimised() {
let graph = TestGraph::new(0, &[(0, 3), (0, 1), (3, 2), (2, 3), (1, 4), (4, 5), (5, 4)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, |n| match n {
3 => MaxReached(1),
_ => MaxReached(0),
});
assert_eq!(sccs.annotation(sccs.scc(2)), 1);
assert_eq!(sccs.annotation(sccs.scc(1)), 0);
assert_eq!(sccs.annotation(sccs.scc(4)), 0);
}
#[test]
fn test_bug_max_leak_minimised() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (3, 0), (3, 4), (4, 3)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, |w| match w {
4 => MaxReached(1),
_ => MaxReached(0),
});
assert_eq!(sccs.annotation(sccs.scc(2)), 0);
assert_eq!(sccs.annotation(sccs.scc(3)), 1);
assert_eq!(sccs.annotation(sccs.scc(0)), 1);
}
#[test]
fn test_bug_max_leak() {
let graph = TestGraph::new(
8,
&[
(0, 0),
(0, 18),
(0, 19),
(0, 1),
(0, 2),
(0, 7),
(0, 8),
(0, 23),
(18, 0),
(18, 12),
(19, 0),
(19, 25),
(12, 18),
(12, 3),
(12, 5),
(3, 12),
(3, 21),
(3, 22),
(5, 13),
(21, 3),
(22, 3),
(13, 5),
(13, 4),
(4, 13),
(4, 0),
(2, 11),
(7, 6),
(6, 20),
(20, 6),
(8, 17),
(17, 9),
(9, 16),
(16, 26),
(26, 15),
(15, 10),
(10, 14),
(14, 27),
(23, 24),
],
);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, |w| match w {
22 => MaxReached(1),
24 => MaxReached(2),
27 => MaxReached(2),
_ => MaxReached(0),
});
assert_eq!(sccs.annotation(sccs.scc(2)), 0);
assert_eq!(sccs.annotation(sccs.scc(7)), 0);
assert_eq!(sccs.annotation(sccs.scc(8)), 2);
assert_eq!(sccs.annotation(sccs.scc(23)), 2);
assert_eq!(sccs.annotation(sccs.scc(3)), 2);
assert_eq!(sccs.annotation(sccs.scc(0)), 2);
}
#[test]
fn test_bug_max_zero_stick_shape() {
let graph = TestGraph::new(0, &[(0, 1), (1, 2), (2, 3), (3, 2), (3, 4)]);
let sccs: MaxReachedSccs = Sccs::new_with_annotation(&graph, |w| match w {
4 => MaxReached(1),
_ => MaxReached(0),
});
assert_eq!(sccs.annotation(sccs.scc(0)), 1);
assert_eq!(sccs.annotation(sccs.scc(1)), 1);
assert_eq!(sccs.annotation(sccs.scc(2)), 1);
assert_eq!(sccs.annotation(sccs.scc(3)), 1);
assert_eq!(sccs.annotation(sccs.scc(4)), 1);
}
#[test]
fn test_min_max_in() {
let graph = TestGraph::new(0, &[(0, 1), (0, 2), (1, 3), (3, 0), (3, 4), (4, 3), (3, 5)]);
let sccs: Sccs<usize, usize, MinMaxIn> =
Sccs::new_with_annotation(&graph, |w| MinMaxIn { min: w, max: w });
assert_eq!(sccs.annotation(sccs.scc(2)).min, 2);
assert_eq!(sccs.annotation(sccs.scc(2)).max, 2);
assert_eq!(sccs.annotation(sccs.scc(0)).min, 0);
assert_eq!(sccs.annotation(sccs.scc(0)).max, 4);
assert_eq!(sccs.annotation(sccs.scc(3)).min, 0);
assert_eq!(sccs.annotation(sccs.scc(3)).max, 4);
assert_eq!(sccs.annotation(sccs.scc(5)).min, 5);
}