interpret: change ABI-compat test to be type-based, so the test is consistent across targets

This commit is contained in:
Ralf Jung 2023-09-09 10:35:26 +02:00
parent cd71a37f32
commit 897a65804d
2 changed files with 146 additions and 68 deletions

View File

@ -6,12 +6,16 @@
mir,
ty::{
self,
layout::{FnAbiOf, LayoutOf, TyAndLayout},
layout::{FnAbiOf, IntegerExt, LayoutOf, TyAndLayout},
Instance, Ty,
},
};
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
use rustc_target::abi::{self, FieldIdx};
use rustc_span::sym;
use rustc_target::abi::FieldIdx;
use rustc_target::abi::{
call::{ArgAbi, FnAbi, PassMode},
Integer,
};
use rustc_target::spec::abi::Abi;
use super::{
@ -255,6 +259,8 @@ pub(super) fn eval_fn_call_arguments(
/// Find the wrapped inner type of a transparent wrapper.
/// Must not be called on 1-ZST (as they don't have a uniquely defined "wrapped field").
///
/// We work with `TyAndLayout` here since that makes it much easier to iterate over all fields.
fn unfold_transparent(&self, layout: TyAndLayout<'tcx>) -> TyAndLayout<'tcx> {
match layout.ty.kind() {
ty::Adt(adt_def, _) if adt_def.repr().transparent() => {
@ -278,6 +284,37 @@ fn unfold_transparent(&self, layout: TyAndLayout<'tcx>) -> TyAndLayout<'tcx> {
}
}
/// Unwrap types that are guaranteed a null-pointer-optimization
fn unfold_npo(&self, ty: Ty<'tcx>) -> InterpResult<'tcx, Ty<'tcx>> {
// Check if this is `Option` wrapping some type.
let inner_ty = match ty.kind() {
ty::Adt(def, args) if self.tcx.is_diagnostic_item(sym::Option, def.did()) => {
args[0].as_type().unwrap()
}
_ => {
// Not an `Option`.
return Ok(ty);
}
};
// Check if the inner type is one of the NPO-guaranteed ones.
Ok(match inner_ty.kind() {
ty::Ref(..) => {
// Option<&T> behaves like &T
inner_ty
}
ty::Adt(def, _)
if self.tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed) =>
{
// For non-null-guaranteed structs, unwrap newtypes.
self.unfold_transparent(self.layout_of(inner_ty)?).ty
}
_ => {
// Everything else we do not unfold.
ty
}
})
}
/// Check if these two layouts look like they are fn-ABI-compatible.
/// (We also compare the `PassMode`, so this doesn't have to check everything. But it turns out
/// that only checking the `PassMode` is insufficient.)
@ -285,63 +322,86 @@ fn layout_compat(
&self,
caller_layout: TyAndLayout<'tcx>,
callee_layout: TyAndLayout<'tcx>,
) -> bool {
) -> InterpResult<'tcx, bool> {
// Fast path: equal types are definitely compatible.
if caller_layout.ty == callee_layout.ty {
// Fast path: equal types are definitely compatible.
return true;
return Ok(true);
}
// 1-ZST are compatible with all 1-ZST (and with nothing else).
if caller_layout.is_1zst() || callee_layout.is_1zst() {
return Ok(caller_layout.is_1zst() && callee_layout.is_1zst());
}
// Unfold newtypes and NPO optimizations.
let caller_ty = self.unfold_npo(self.unfold_transparent(caller_layout).ty)?;
let callee_ty = self.unfold_npo(self.unfold_transparent(callee_layout).ty)?;
// Now see if these inner types are compatible.
// Compatible pointer types.
let pointee_ty = |ty: Ty<'tcx>| {
// We cannot use `builtin_deref` here since we need to reject `Box<T, MyAlloc>`.
Some(match ty.kind() {
ty::Ref(_, ty, _) => *ty,
ty::RawPtr(mt) => mt.ty,
// We should only accept `Box` with the default allocator.
// It's hard to test for that though so we accept every 1-ZST allocator.
ty::Adt(def, args)
if def.is_box()
&& self.layout_of(args[1].expect_ty()).is_ok_and(|l| l.is_1zst()) =>
{
args[0].expect_ty()
}
_ => return None,
})
};
if let (Some(left), Some(right)) = (pointee_ty(caller_ty), pointee_ty(callee_ty)) {
// This is okay if they have the same metadata type.
let meta_ty = |ty: Ty<'tcx>| {
let (meta, only_if_sized) = ty.ptr_metadata_ty(*self.tcx, |ty| ty);
assert!(
!only_if_sized,
"there should be no more 'maybe has that metadata' types during interpretation"
);
meta
};
return Ok(meta_ty(left) == meta_ty(right));
}
match caller_layout.abi {
// For Scalar/Vector/ScalarPair ABI, we directly compare them.
// NOTE: this is *not* a stable guarantee! It just reflects a property of our current
// ABIs. It's also fragile; the same pair of types might be considered ABI-compatible
// when used directly by-value but not considered compatible as a struct field or array
// element.
abi::Abi::Scalar(..) | abi::Abi::ScalarPair(..) | abi::Abi::Vector { .. } => {
caller_layout.abi.eq_up_to_validity(&callee_layout.abi)
}
_ => {
// Everything else is compatible only if they newtype-wrap the same type, or if they are both 1-ZST.
// (The latter part is needed to ensure e.g. that `struct Zst` is compatible with `struct Wrap((), Zst)`.)
// This is conservative, but also means that our check isn't quite so heavily dependent on the `PassMode`,
// which means having ABI-compatibility on one target is much more likely to imply compatibility for other targets.
if caller_layout.is_1zst() || callee_layout.is_1zst() {
// If either is a 1-ZST, both must be.
caller_layout.is_1zst() && callee_layout.is_1zst()
} else {
// Neither is a 1-ZST, so we can check what they are wrapping.
self.unfold_transparent(caller_layout).ty
== self.unfold_transparent(callee_layout).ty
}
}
// Compatible integer types (in particular, usize vs ptr-sized-u32/u64).
let int_ty = |ty: Ty<'tcx>| {
Some(match ty.kind() {
ty::Int(ity) => (Integer::from_int_ty(&self.tcx, *ity), /* signed */ true),
ty::Uint(uty) => (Integer::from_uint_ty(&self.tcx, *uty), /* signed */ false),
_ => return None,
})
};
if let (Some(left), Some(right)) = (int_ty(caller_ty), int_ty(callee_ty)) {
// This is okay if they are the same integer type.
return Ok(left == right);
}
// Fall back to exact equality.
// FIXME: We are missing the rules for "repr(C) wrapping compatible types".
Ok(caller_ty == callee_ty)
}
fn check_argument_compat(
&self,
caller_abi: &ArgAbi<'tcx, Ty<'tcx>>,
callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
) -> bool {
// Ideally `PassMode` would capture everything there is about argument passing, but that is
// not the case: in `FnAbi::llvm_type`, also parts of the layout and type information are
// used. So we need to check that *both* sufficiently agree to ensures the arguments are
// compatible.
// For instance, `layout_compat` is needed to reject `i32` vs `f32`, which is not reflected
// in `PassMode`. `mode_compat` is needed to reject `u8` vs `bool`, which have the same
// `abi::Primitive` but different `arg_ext`.
if self.layout_compat(caller_abi.layout, callee_abi.layout)
&& caller_abi.mode.eq_abi(&callee_abi.mode)
{
// Something went very wrong if our checks don't imply layout ABI compatibility.
assert!(caller_abi.layout.eq_abi(&callee_abi.layout));
return true;
) -> InterpResult<'tcx, bool> {
// We do not want to accept things as ABI-compatible that just "happen to be" compatible on the current target,
// so we implement a type-based check that reflects the guaranteed rules for ABI compatibility.
if self.layout_compat(caller_abi.layout, callee_abi.layout)? {
// Ensure that our checks imply actual ABI compatibility for this concrete call.
assert!(caller_abi.eq_abi(&callee_abi));
return Ok(true);
} else {
trace!(
"check_argument_compat: incompatible ABIs:\ncaller: {:?}\ncallee: {:?}",
caller_abi,
callee_abi
);
return false;
return Ok(false);
}
}
@ -360,6 +420,7 @@ fn pass_argument<'x, 'y>(
'tcx: 'x,
'tcx: 'y,
{
assert_eq!(callee_ty, callee_abi.layout.ty);
if matches!(callee_abi.mode, PassMode::Ignore) {
// This one is skipped. Still must be made live though!
if !already_live {
@ -371,8 +432,13 @@ fn pass_argument<'x, 'y>(
let Some((caller_arg, caller_abi)) = caller_args.next() else {
throw_ub_custom!(fluent::const_eval_not_enough_caller_args);
};
assert_eq!(caller_arg.layout().layout, caller_abi.layout.layout);
// Sadly we cannot assert that `caller_arg.layout().ty` and `caller_abi.layout.ty` are
// equal; in closures the types sometimes differ. We just hope that `caller_abi` is the
// right type to print to the user.
// Check compatibility
if !self.check_argument_compat(caller_abi, callee_abi) {
if !self.check_argument_compat(caller_abi, callee_abi)? {
let callee_ty = format!("{}", callee_ty);
let caller_ty = format!("{}", caller_arg.layout().ty);
throw_ub_custom!(
@ -583,7 +649,7 @@ pub(crate) fn eval_fn_call(
// taking into account the `spread_arg`. If we could write
// this is a single iterator (that handles `spread_arg`), then
// `pass_argument` would be the loop body. It takes care to
// not advance `caller_iter` for ZSTs.
// not advance `caller_iter` for ignored arguments.
let mut callee_args_abis = callee_fn_abi.args.iter();
for local in body.args_iter() {
// Construct the destination place for this argument. At this point all
@ -645,7 +711,7 @@ pub(crate) fn eval_fn_call(
throw_ub_custom!(fluent::const_eval_too_many_caller_args);
}
// Don't forget to check the return type!
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret) {
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret)? {
let callee_ty = format!("{}", callee_fn_abi.ret.layout.ty);
let caller_ty = format!("{}", caller_fn_abi.ret.layout.ty);
throw_ub_custom!(
@ -674,7 +740,8 @@ pub(crate) fn eval_fn_call(
Ok(()) => Ok(()),
}
}
// cannot use the shim here, because that will only result in infinite recursion
// `InstanceDef::Virtual` does not have callable MIR. Calls to `Virtual` instances must be
// codegen'd / interpreted as virtual calls through the vtable.
ty::InstanceDef::Virtual(def_id, idx) => {
let mut args = args.to_vec();
// We have to implement all "object safe receivers". So we have to go search for a
@ -798,18 +865,26 @@ pub(crate) fn eval_fn_call(
}
// Adjust receiver argument. Layout can be any (thin) ptr.
let receiver_ty = Ty::new_mut_ptr(self.tcx.tcx, dyn_ty);
args[0] = FnArg::Copy(
ImmTy::from_immediate(
Scalar::from_maybe_pointer(adjusted_receiver, self).into(),
self.layout_of(Ty::new_mut_ptr(self.tcx.tcx, dyn_ty))?,
self.layout_of(receiver_ty)?,
)
.into(),
);
trace!("Patched receiver operand to {:#?}", args[0]);
// Need to also adjust the type in the ABI. Strangely, the layout there is actually
// already fine! Just the type is bogus. This is due to what `force_thin_self_ptr`
// does in `fn_abi_new_uncached`; supposedly, codegen relies on having the bogus
// type, so we just patch this up locally.
let mut caller_fn_abi = caller_fn_abi.clone();
caller_fn_abi.args[0].layout.ty = receiver_ty;
// recurse with concrete function
self.eval_fn_call(
FnVal::Instance(fn_inst),
(caller_abi, caller_fn_abi),
(caller_abi, &caller_fn_abi),
&args,
with_caller_location,
destination,

View File

@ -1,10 +1,11 @@
use std::mem;
use std::num;
use std::ptr;
#[derive(Copy, Clone, Default)]
struct Zst;
fn test_abi_compat<T: Copy, U: Copy>(t: T, u: U) {
fn test_abi_compat<T: Clone, U: Clone>(t: T, u: U) {
fn id<T>(x: T) -> T {
x
}
@ -16,10 +17,10 @@ extern "C" fn id_c<T>(x: T) -> T {
// in both directions.
let f: fn(T) -> T = id;
let f: fn(U) -> U = unsafe { std::mem::transmute(f) };
let _val = f(u);
let _val = f(u.clone());
let f: fn(U) -> U = id;
let f: fn(T) -> T = unsafe { std::mem::transmute(f) };
let _val = f(t);
let _val = f(t.clone());
// And then we do the same for `extern "C"`.
let f: extern "C" fn(T) -> T = id_c;
@ -54,23 +55,25 @@ fn test_abi_newtype<T: Copy + Default>() {
}
fn main() {
// Here we check:
// - u32 vs char is allowed
// - u32 vs NonZeroU32/Option<NonZeroU32> is allowed
// - reference vs raw pointer is allowed
// - references to things of the same size and alignment are allowed
// These are very basic tests that should work on all ABIs. However it is not clear that any of
// these would be stably guaranteed. Code that relies on this is equivalent to code that relies
// on the layout of `repr(Rust)` types. They are also fragile: the same mismatches in the fields
// of a struct (even with `repr(C)`) will not always be accepted by Miri.
// Note that `bool` and `u8` are *not* compatible, at least on x86-64!
// One of them has `arg_ext: Zext`, the other does not.
// Similarly, `i32` and `u32` are not compatible on s390x due to different `arg_ext`.
test_abi_compat(0u32, 'x');
// Here we check some of the guaranteed ABI compatibilities.
// Different integer types of the same size and sign.
if cfg!(target_pointer_width = "32") {
test_abi_compat(0usize, 0u32);
test_abi_compat(0isize, 0i32);
} else {
test_abi_compat(0usize, 0u64);
test_abi_compat(0isize, 0i64);
}
// Reference/pointer types with the same pointee.
test_abi_compat(&0u32, &0u32 as *const u32);
test_abi_compat(&mut 0u32 as *mut u32, Box::new(0u32));
test_abi_compat(&(), ptr::NonNull::<()>::dangling());
// Reference/pointer types with different but sized pointees.
test_abi_compat(&0u32, &([true; 4], [0u32; 0]));
// Guaranteed null-pointer-optimizations.
test_abi_compat(&0u32 as *const u32, Some(&0u32));
test_abi_compat(42u32, num::NonZeroU32::new(1).unwrap());
test_abi_compat(0u32, Some(num::NonZeroU32::new(1).unwrap()));
test_abi_compat(&0u32, &0u32 as *const u32);
test_abi_compat(&0u32, &([true; 4], [0u32; 0]));
// These must work for *any* type, since we guarantee that `repr(transparent)` is ABI-compatible
// with the wrapped field.