Auto merge of #67330 - golddranks:split_inclusive, r=kodraus

Implement split_inclusive for slice and str

# Overview
* Implement `split_inclusive` for `slice` and `str` and `split_inclusive_mut` for `slice`
* `split_inclusive` is a substring/subslice splitting iterator that includes the matched part in the iterated substrings as a terminator.
* EDIT: The behaviour has now changed, as per @KodrAus 's input, to the same semantics with the `split_terminator` function. I updated the examples below.
* Two examples below:
```Rust
    let data = "\nMäry häd ä little lämb\nLittle lämb\n";
    let split: Vec<&str> = data.split_inclusive('\n').collect();
    assert_eq!(split, ["\n", "Märy häd ä little lämb\n", "Little lämb\n"]);
```

```Rust
    let uppercase_separated = "SheePSharKTurtlECaT";
    let mut first_char = true;
    let split: Vec<&str> = uppercase_separated.split_inclusive(|c: char| {
        let split = !first_char && c.is_uppercase();
        first_char = split;
        split
    }).collect();
    assert_eq!(split, ["SheeP", "SharK", "TurtlE", "CaT"]);
```

# Justification for the API
* I was surprised to find that stdlib currently only has splitting iterators that leave out the matched part. In my experience, wanting to leave a substring terminator as a part of the substring is a pretty common usecase.
* This API is strictly more expressive than the standard `split` API: it's easy to get the behaviour of `split` by mapping a subslicing operation that drops the terminator. On the other hand it's impossible to derive this behaviour from `split` without using hacky and brittle `unsafe` code. The normal way to achieve this functionality would be implementing the iterator yourself.
* Especially when dealing with mutable slices, the only way currently is to use `split_at_mut`. This API provides an ergonomic alternative that plays to the strengths of the iterating capabilities of Rust. (Using `split_at_mut` iteratively used to be a real pain before NLL, fortunately the situation is a bit better now.)

# Discussion items
* <s>Does it make sense to mimic `split_terminator` in that the final empty slice would be left off in case of the string/slice ending with a terminator? It might do, as this use case is naturally geared towards considering the matching part as a terminator instead of a separator.</s>
  * EDIT: The behaviour was changed to mimic `split_terminator`.
* Does it make sense to have `split_inclusive_mut` for `&mut str`?
This commit is contained in:
bors 2020-02-22 03:54:50 +00:00
commit 87e494c4cd
5 changed files with 545 additions and 1 deletions

View File

@ -12,6 +12,7 @@
#![feature(binary_heap_into_iter_sorted)]
#![feature(binary_heap_drain_sorted)]
#![feature(vec_remove_item)]
#![feature(split_inclusive)]
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};

View File

@ -851,6 +851,86 @@ fn test_splitator() {
assert_eq!(xs.split(|x| *x == 5).collect::<Vec<&[i32]>>(), splits);
}
#[test]
fn test_splitator_inclusive() {
let xs = &[1, 2, 3, 4, 5];
let splits: &[&[_]] = &[&[1, 2], &[3, 4], &[5]];
assert_eq!(xs.split_inclusive(|x| *x % 2 == 0).collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1], &[2, 3, 4, 5]];
assert_eq!(xs.split_inclusive(|x| *x == 1).collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
assert_eq!(xs.split_inclusive(|x| *x == 5).collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
assert_eq!(xs.split_inclusive(|x| *x == 10).collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1], &[2], &[3], &[4], &[5]];
assert_eq!(xs.split_inclusive(|_| true).collect::<Vec<&[i32]>>(), splits);
let xs: &[i32] = &[];
let splits: &[&[i32]] = &[&[]];
assert_eq!(xs.split_inclusive(|x| *x == 5).collect::<Vec<&[i32]>>(), splits);
}
#[test]
fn test_splitator_inclusive_reverse() {
let xs = &[1, 2, 3, 4, 5];
let splits: &[&[_]] = &[&[5], &[3, 4], &[1, 2]];
assert_eq!(xs.split_inclusive(|x| *x % 2 == 0).rev().collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[2, 3, 4, 5], &[1]];
assert_eq!(xs.split_inclusive(|x| *x == 1).rev().collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
assert_eq!(xs.split_inclusive(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
assert_eq!(xs.split_inclusive(|x| *x == 10).rev().collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[5], &[4], &[3], &[2], &[1]];
assert_eq!(xs.split_inclusive(|_| true).rev().collect::<Vec<_>>(), splits);
let xs: &[i32] = &[];
let splits: &[&[i32]] = &[&[]];
assert_eq!(xs.split_inclusive(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
}
#[test]
fn test_splitator_mut_inclusive() {
let xs = &mut [1, 2, 3, 4, 5];
let splits: &[&[_]] = &[&[1, 2], &[3, 4], &[5]];
assert_eq!(xs.split_inclusive_mut(|x| *x % 2 == 0).collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1], &[2, 3, 4, 5]];
assert_eq!(xs.split_inclusive_mut(|x| *x == 1).collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
assert_eq!(xs.split_inclusive_mut(|x| *x == 5).collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
assert_eq!(xs.split_inclusive_mut(|x| *x == 10).collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1], &[2], &[3], &[4], &[5]];
assert_eq!(xs.split_inclusive_mut(|_| true).collect::<Vec<_>>(), splits);
let xs: &mut [i32] = &mut [];
let splits: &[&[i32]] = &[&[]];
assert_eq!(xs.split_inclusive_mut(|x| *x == 5).collect::<Vec<_>>(), splits);
}
#[test]
fn test_splitator_mut_inclusive_reverse() {
let xs = &mut [1, 2, 3, 4, 5];
let splits: &[&[_]] = &[&[5], &[3, 4], &[1, 2]];
assert_eq!(xs.split_inclusive_mut(|x| *x % 2 == 0).rev().collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[2, 3, 4, 5], &[1]];
assert_eq!(xs.split_inclusive_mut(|x| *x == 1).rev().collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
assert_eq!(xs.split_inclusive_mut(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[1, 2, 3, 4, 5]];
assert_eq!(xs.split_inclusive_mut(|x| *x == 10).rev().collect::<Vec<_>>(), splits);
let splits: &[&[_]] = &[&[5], &[4], &[3], &[2], &[1]];
assert_eq!(xs.split_inclusive_mut(|_| true).rev().collect::<Vec<_>>(), splits);
let xs: &mut [i32] = &mut [];
let splits: &[&[i32]] = &[&[]];
assert_eq!(xs.split_inclusive_mut(|x| *x == 5).rev().collect::<Vec<_>>(), splits);
}
#[test]
fn test_splitnator() {
let xs = &[1, 2, 3, 4, 5];

View File

@ -1247,6 +1247,49 @@ fn test_split_char_iterator_no_trailing() {
assert_eq!(split, ["", "Märy häd ä little lämb", "Little lämb"]);
}
#[test]
fn test_split_char_iterator_inclusive() {
let data = "\nMäry häd ä little lämb\nLittle lämb\n";
let split: Vec<&str> = data.split_inclusive('\n').collect();
assert_eq!(split, ["\n", "Märy häd ä little lämb\n", "Little lämb\n"]);
let uppercase_separated = "SheePSharKTurtlECaT";
let mut first_char = true;
let split: Vec<&str> = uppercase_separated
.split_inclusive(|c: char| {
let split = !first_char && c.is_uppercase();
first_char = split;
split
})
.collect();
assert_eq!(split, ["SheeP", "SharK", "TurtlE", "CaT"]);
}
#[test]
fn test_split_char_iterator_inclusive_rev() {
let data = "\nMäry häd ä little lämb\nLittle lämb\n";
let split: Vec<&str> = data.split_inclusive('\n').rev().collect();
assert_eq!(split, ["Little lämb\n", "Märy häd ä little lämb\n", "\n"]);
// Note that the predicate is stateful and thus dependent
// on the iteration order.
// (A different predicate is needed for reverse iterator vs normal iterator.)
// Not sure if anything can be done though.
let uppercase_separated = "SheePSharKTurtlECaT";
let mut term_char = true;
let split: Vec<&str> = uppercase_separated
.split_inclusive(|c: char| {
let split = term_char && c.is_uppercase();
term_char = c.is_uppercase();
split
})
.rev()
.collect();
assert_eq!(split, ["CaT", "TurtlE", "SharK", "SheeP"]);
}
#[test]
fn test_rsplit() {
let data = "\nMäry häd ä little lämb\nLittle lämb\n";

View File

@ -1155,6 +1155,69 @@ pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
SplitMut { v: self, pred, finished: false }
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`. The matched element is contained in the end of the previous
/// subslice as a terminator.
///
/// # Examples
///
/// ```
/// #![feature(split_inclusive)]
/// let slice = [10, 40, 33, 20];
/// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
///
/// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
/// assert_eq!(iter.next().unwrap(), &[20]);
/// assert!(iter.next().is_none());
/// ```
///
/// If the last element of the slice is matched,
/// that element will be considered the terminator of the preceding slice.
/// That slice will be the last item returned by the iterator.
///
/// ```
/// #![feature(split_inclusive)]
/// let slice = [3, 10, 40, 33];
/// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
///
/// assert_eq!(iter.next().unwrap(), &[3]);
/// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
/// assert!(iter.next().is_none());
/// ```
#[unstable(feature = "split_inclusive", issue = "none")]
#[inline]
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
where
F: FnMut(&T) -> bool,
{
SplitInclusive { v: self, pred, finished: false }
}
/// Returns an iterator over mutable subslices separated by elements that
/// match `pred`. The matched element is contained in the previous
/// subslice as a terminator.
///
/// # Examples
///
/// ```
/// #![feature(split_inclusive)]
/// let mut v = [10, 40, 30, 20, 60, 50];
///
/// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
/// let terminator_idx = group.len()-1;
/// group[terminator_idx] = 1;
/// }
/// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
/// ```
#[unstable(feature = "split_inclusive", issue = "none")]
#[inline]
pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
where
F: FnMut(&T) -> bool,
{
SplitInclusiveMut { v: self, pred, finished: false }
}
/// Returns an iterator over subslices separated by elements that match
/// `pred`, starting at the end of the slice and working backwards.
/// The matched element is not contained in the subslices.
@ -3675,7 +3738,106 @@ fn finish(&mut self) -> Option<&'a [T]> {
#[stable(feature = "fused", since = "1.26.0")]
impl<T, P> FusedIterator for Split<'_, T, P> where P: FnMut(&T) -> bool {}
/// An iterator over the subslices of the vector which are separated
/// An iterator over subslices separated by elements that match a predicate
/// function. Unlike `Split`, it contains the matched part as a terminator
/// of the subslice.
///
/// This struct is created by the [`split_inclusive`] method on [slices].
///
/// [`split_inclusive`]: ../../std/primitive.slice.html#method.split_inclusive
/// [slices]: ../../std/primitive.slice.html
#[unstable(feature = "split_inclusive", issue = "none")]
pub struct SplitInclusive<'a, T: 'a, P>
where
P: FnMut(&T) -> bool,
{
v: &'a [T],
pred: P,
finished: bool,
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<T: fmt::Debug, P> fmt::Debug for SplitInclusive<'_, T, P>
where
P: FnMut(&T) -> bool,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SplitInclusive")
.field("v", &self.v)
.field("finished", &self.finished)
.finish()
}
}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
#[unstable(feature = "split_inclusive", issue = "none")]
impl<T, P> Clone for SplitInclusive<'_, T, P>
where
P: Clone + FnMut(&T) -> bool,
{
fn clone(&self) -> Self {
SplitInclusive { v: self.v, pred: self.pred.clone(), finished: self.finished }
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, T, P> Iterator for SplitInclusive<'a, T, P>
where
P: FnMut(&T) -> bool,
{
type Item = &'a [T];
#[inline]
fn next(&mut self) -> Option<&'a [T]> {
if self.finished {
return None;
}
let idx =
self.v.iter().position(|x| (self.pred)(x)).map(|idx| idx + 1).unwrap_or(self.v.len());
if idx == self.v.len() {
self.finished = true;
}
let ret = Some(&self.v[..idx]);
self.v = &self.v[idx..];
ret
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.finished { (0, Some(0)) } else { (1, Some(self.v.len() + 1)) }
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, T, P> DoubleEndedIterator for SplitInclusive<'a, T, P>
where
P: FnMut(&T) -> bool,
{
#[inline]
fn next_back(&mut self) -> Option<&'a [T]> {
if self.finished {
return None;
}
// The last index of self.v is already checked and found to match
// by the last iteration, so we start searching a new match
// one index to the left.
let remainder = if self.v.len() == 0 { &[] } else { &self.v[..(self.v.len() - 1)] };
let idx = remainder.iter().rposition(|x| (self.pred)(x)).map(|idx| idx + 1).unwrap_or(0);
if idx == 0 {
self.finished = true;
}
let ret = Some(&self.v[idx..]);
self.v = &self.v[..idx];
ret
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<T, P> FusedIterator for SplitInclusive<'_, T, P> where P: FnMut(&T) -> bool {}
/// An iterator over the mutable subslices of the vector which are separated
/// by elements that match `pred`.
///
/// This struct is created by the [`split_mut`] method on [slices].
@ -3789,6 +3951,114 @@ fn next_back(&mut self) -> Option<&'a mut [T]> {
#[stable(feature = "fused", since = "1.26.0")]
impl<T, P> FusedIterator for SplitMut<'_, T, P> where P: FnMut(&T) -> bool {}
/// An iterator over the mutable subslices of the vector which are separated
/// by elements that match `pred`. Unlike `SplitMut`, it contains the matched
/// parts in the ends of the subslices.
///
/// This struct is created by the [`split_inclusive_mut`] method on [slices].
///
/// [`split_inclusive_mut`]: ../../std/primitive.slice.html#method.split_inclusive_mut
/// [slices]: ../../std/primitive.slice.html
#[unstable(feature = "split_inclusive", issue = "none")]
pub struct SplitInclusiveMut<'a, T: 'a, P>
where
P: FnMut(&T) -> bool,
{
v: &'a mut [T],
pred: P,
finished: bool,
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<T: fmt::Debug, P> fmt::Debug for SplitInclusiveMut<'_, T, P>
where
P: FnMut(&T) -> bool,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SplitInclusiveMut")
.field("v", &self.v)
.field("finished", &self.finished)
.finish()
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, T, P> Iterator for SplitInclusiveMut<'a, T, P>
where
P: FnMut(&T) -> bool,
{
type Item = &'a mut [T];
#[inline]
fn next(&mut self) -> Option<&'a mut [T]> {
if self.finished {
return None;
}
let idx_opt = {
// work around borrowck limitations
let pred = &mut self.pred;
self.v.iter().position(|x| (*pred)(x))
};
let idx = idx_opt.map(|idx| idx + 1).unwrap_or(self.v.len());
if idx == self.v.len() {
self.finished = true;
}
let tmp = mem::replace(&mut self.v, &mut []);
let (head, tail) = tmp.split_at_mut(idx);
self.v = tail;
Some(head)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.finished {
(0, Some(0))
} else {
// if the predicate doesn't match anything, we yield one slice
// if it matches every element, we yield len+1 empty slices.
(1, Some(self.v.len() + 1))
}
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, T, P> DoubleEndedIterator for SplitInclusiveMut<'a, T, P>
where
P: FnMut(&T) -> bool,
{
#[inline]
fn next_back(&mut self) -> Option<&'a mut [T]> {
if self.finished {
return None;
}
let idx_opt = if self.v.len() == 0 {
None
} else {
// work around borrowck limitations
let pred = &mut self.pred;
// The last index of self.v is already checked and found to match
// by the last iteration, so we start searching a new match
// one index to the left.
let remainder = &self.v[..(self.v.len() - 1)];
remainder.iter().rposition(|x| (*pred)(x))
};
let idx = idx_opt.map(|idx| idx + 1).unwrap_or(0);
if idx == 0 {
self.finished = true;
}
let tmp = mem::replace(&mut self.v, &mut []);
let (head, tail) = tmp.split_at_mut(idx);
self.v = head;
Some(tail)
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<T, P> FusedIterator for SplitInclusiveMut<'_, T, P> where P: FnMut(&T) -> bool {}
/// An iterator over subslices separated by elements that match a predicate
/// function, starting from the end of the slice.
///

View File

@ -1132,6 +1132,26 @@ fn next(&mut self) -> Option<&'a str> {
}
}
#[inline]
fn next_inclusive(&mut self) -> Option<&'a str> {
if self.finished {
return None;
}
let haystack = self.matcher.haystack();
match self.matcher.next_match() {
// SAFETY: `Searcher` guarantees that `b` lies on unicode boundary,
// and self.start is either the start of the original string,
// or `b` was assigned to it, so it also lies on unicode boundary.
Some((_, b)) => unsafe {
let elt = haystack.get_unchecked(self.start..b);
self.start = b;
Some(elt)
},
None => self.get_end(),
}
}
#[inline]
fn next_back(&mut self) -> Option<&'a str>
where
@ -1168,6 +1188,49 @@ fn next_back(&mut self) -> Option<&'a str>
},
}
}
#[inline]
fn next_back_inclusive(&mut self) -> Option<&'a str>
where
P::Searcher: ReverseSearcher<'a>,
{
if self.finished {
return None;
}
if !self.allow_trailing_empty {
self.allow_trailing_empty = true;
match self.next_back_inclusive() {
Some(elt) if !elt.is_empty() => return Some(elt),
_ => {
if self.finished {
return None;
}
}
}
}
let haystack = self.matcher.haystack();
match self.matcher.next_match_back() {
// SAFETY: `Searcher` guarantees that `b` lies on unicode boundary,
// and self.end is either the end of the original string,
// or `b` was assigned to it, so it also lies on unicode boundary.
Some((_, b)) => unsafe {
let elt = haystack.get_unchecked(b..self.end);
self.end = b;
Some(elt)
},
// SAFETY: self.start is either the start of the original string,
// or start of a substring that represents the part of the string that hasn't
// iterated yet. Either way, it is guaranteed to lie on unicode boundary.
// self.end is either the end of the original string,
// or `b` was assigned to it, so it also lies on unicode boundary.
None => unsafe {
self.finished = true;
Some(haystack.get_unchecked(self.start..self.end))
},
}
}
}
generate_pattern_iterators! {
@ -3213,6 +3276,42 @@ pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> {
})
}
/// An iterator over substrings of this string slice, separated by
/// characters matched by a pattern. Differs from the iterator produced by
/// `split` in that `split_inclusive` leaves the matched part as the
/// terminator of the substring.
///
/// # Examples
///
/// ```
/// #![feature(split_inclusive)]
/// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
/// .split_inclusive('\n').collect();
/// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
/// ```
///
/// If the last element of the string is matched,
/// that element will be considered the terminator of the preceding substring.
/// That substring will be the last item returned by the iterator.
///
/// ```
/// #![feature(split_inclusive)]
/// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
/// .split_inclusive('\n').collect();
/// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
/// ```
#[unstable(feature = "split_inclusive", issue = "none")]
#[inline]
pub fn split_inclusive<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitInclusive<'a, P> {
SplitInclusive(SplitInternal {
start: 0,
end: self.len(),
matcher: pat.into_searcher(self),
allow_trailing_empty: false,
finished: false,
})
}
/// An iterator over substrings of the given string slice, separated by
/// characters matched by a pattern and yielded in reverse order.
///
@ -4406,6 +4505,19 @@ pub struct SplitAsciiWhitespace<'a> {
inner: Map<Filter<SliceSplit<'a, u8, IsAsciiWhitespace>, BytesIsNotEmpty>, UnsafeBytesToStr>,
}
/// An iterator over the substrings of a string,
/// terminated by a substring matching to a predicate function
/// Unlike `Split`, it contains the matched part as a terminator
/// of the subslice.
///
/// This struct is created by the [`split_inclusive`] method on [`str`].
/// See its documentation for more.
///
/// [`split_inclusive`]: ../../std/primitive.str.html#method.split_inclusive
/// [`str`]: ../../std/primitive.str.html
#[unstable(feature = "split_inclusive", issue = "none")]
pub struct SplitInclusive<'a, P: Pattern<'a>>(SplitInternal<'a, P>);
impl_fn_for_zst! {
#[derive(Clone)]
struct IsWhitespace impl Fn = |c: char| -> bool {
@ -4496,6 +4608,44 @@ fn next_back(&mut self) -> Option<&'a str> {
#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
impl FusedIterator for SplitAsciiWhitespace<'_> {}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, P: Pattern<'a>> Iterator for SplitInclusive<'a, P> {
type Item = &'a str;
#[inline]
fn next(&mut self) -> Option<&'a str> {
self.0.next_inclusive()
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, P: Pattern<'a, Searcher: fmt::Debug>> fmt::Debug for SplitInclusive<'a, P> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SplitInclusive").field("0", &self.0).finish()
}
}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, P: Pattern<'a, Searcher: Clone>> Clone for SplitInclusive<'a, P> {
fn clone(&self) -> Self {
SplitInclusive(self.0.clone())
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, P: Pattern<'a, Searcher: ReverseSearcher<'a>>> DoubleEndedIterator
for SplitInclusive<'a, P>
{
#[inline]
fn next_back(&mut self) -> Option<&'a str> {
self.0.next_back_inclusive()
}
}
#[unstable(feature = "split_inclusive", issue = "none")]
impl<'a, P: Pattern<'a>> FusedIterator for SplitInclusive<'a, P> {}
/// An iterator of [`u16`] over the string encoded as UTF-16.
///
/// [`u16`]: ../../std/primitive.u16.html