interpret: factor out common code for place mutation

This commit is contained in:
Ralf Jung 2024-08-29 13:56:01 +02:00
parent 8ad808db7e
commit 85dc22f2cf
3 changed files with 89 additions and 81 deletions

View File

@ -111,6 +111,32 @@ pub fn to_scalar_and_meta(self) -> (Scalar<Prov>, MemPlaceMeta<Prov>) {
Immediate::Uninit => bug!("Got uninit where a scalar or scalar pair was expected"), Immediate::Uninit => bug!("Got uninit where a scalar or scalar pair was expected"),
} }
} }
/// Assert that this immediate is a valid value for the given ABI.
pub fn assert_matches_abi(self, abi: Abi, cx: &impl HasDataLayout) {
match (self, abi) {
(Immediate::Scalar(scalar), Abi::Scalar(s)) => {
assert_eq!(scalar.size(), s.size(cx));
if !matches!(s.primitive(), abi::Pointer(..)) {
assert!(matches!(scalar, Scalar::Int(..)));
}
}
(Immediate::ScalarPair(a_val, b_val), Abi::ScalarPair(a, b)) => {
assert_eq!(a_val.size(), a.size(cx));
if !matches!(a.primitive(), abi::Pointer(..)) {
assert!(matches!(a_val, Scalar::Int(..)));
}
assert_eq!(b_val.size(), b.size(cx));
if !matches!(b.primitive(), abi::Pointer(..)) {
assert!(matches!(b_val, Scalar::Int(..)));
}
}
(Immediate::Uninit, _) => {}
_ => {
bug!("value {self:?} does not match ABI {abi:?})",)
}
}
}
} }
// ScalarPair needs a type to interpret, so we often have an immediate and a type together // ScalarPair needs a type to interpret, so we often have an immediate and a type together

View File

@ -180,7 +180,8 @@ pub(super) enum Place<Prov: Provenance = CtfeProvenance> {
Ptr(MemPlace<Prov>), Ptr(MemPlace<Prov>),
/// To support alloc-free locals, we are able to write directly to a local. The offset indicates /// To support alloc-free locals, we are able to write directly to a local. The offset indicates
/// where in the local this place is located; if it is `None`, no projection has been applied. /// where in the local this place is located; if it is `None`, no projection has been applied
/// and the type of the place is exactly the type of the local.
/// Such projections are meaningful even if the offset is 0, since they can change layouts. /// Such projections are meaningful even if the offset is 0, since they can change layouts.
/// (Without that optimization, we'd just always be a `MemPlace`.) /// (Without that optimization, we'd just always be a `MemPlace`.)
/// `Local` places always refer to the current stack frame, so they are unstable under /// `Local` places always refer to the current stack frame, so they are unstable under
@ -557,6 +558,40 @@ pub fn eval_place(
Ok(place) Ok(place)
} }
/// Given a place, returns either the underlying mplace or a reference to where the value of
/// this place is stored.
fn as_mplace_or_mutable_local(
&mut self,
place: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<
'tcx,
Either<MPlaceTy<'tcx, M::Provenance>, (&mut Immediate<M::Provenance>, TyAndLayout<'tcx>)>,
> {
Ok(match place.to_place().as_mplace_or_local() {
Left(mplace) => Left(mplace),
Right((local, offset, locals_addr, layout)) => {
if offset.is_some() {
// This has been projected to a part of this local, or had the type changed.
// FIMXE: there are cases where we could still avoid allocating an mplace.
Left(place.force_mplace(self)?)
} else {
debug_assert_eq!(locals_addr, self.frame().locals_addr());
debug_assert_eq!(self.layout_of_local(self.frame(), local, None)?, layout);
match self.frame_mut().locals[local].access_mut()? {
Operand::Indirect(mplace) => {
// The local is in memory.
Left(MPlaceTy { mplace: *mplace, layout })
}
Operand::Immediate(local_val) => {
// The local still has the optimized representation.
Right((local_val, layout))
}
}
}
}
})
}
/// Write an immediate to a place /// Write an immediate to a place
#[inline(always)] #[inline(always)]
#[instrument(skip(self), level = "trace")] #[instrument(skip(self), level = "trace")]
@ -608,60 +643,20 @@ fn write_immediate_no_validate(
) -> InterpResult<'tcx> { ) -> InterpResult<'tcx> {
assert!(dest.layout().is_sized(), "Cannot write unsized immediate data"); assert!(dest.layout().is_sized(), "Cannot write unsized immediate data");
// See if we can avoid an allocation. This is the counterpart to `read_immediate_raw`, match self.as_mplace_or_mutable_local(&dest.to_place())? {
// but not factored as a separate function. Right((local_val, local_layout)) => {
let mplace = match dest.to_place().as_mplace_or_local() { // Local can be updated in-place.
Right((local, offset, locals_addr, layout)) => { *local_val = src;
if offset.is_some() { // Double-check that the value we are storing and the local fit to each other.
// This has been projected to a part of this local. We could have complicated if cfg!(debug_assertions) {
// logic to still keep this local as an `Operand`... but it's much easier to src.assert_matches_abi(local_layout.abi, self);
// just fall back to the indirect path.
dest.force_mplace(self)?
} else {
debug_assert_eq!(locals_addr, self.frame().locals_addr());
match self.frame_mut().locals[local].access_mut()? {
Operand::Immediate(local_val) => {
// Local can be updated in-place.
*local_val = src;
// Double-check that the value we are storing and the local fit to each other.
// (*After* doing the update for borrow checker reasons.)
if cfg!(debug_assertions) {
let local_layout =
self.layout_of_local(&self.frame(), local, None)?;
match (src, local_layout.abi) {
(Immediate::Scalar(scalar), Abi::Scalar(s)) => {
assert_eq!(scalar.size(), s.size(self))
}
(
Immediate::ScalarPair(a_val, b_val),
Abi::ScalarPair(a, b),
) => {
assert_eq!(a_val.size(), a.size(self));
assert_eq!(b_val.size(), b.size(self));
}
(Immediate::Uninit, _) => {}
(src, abi) => {
bug!(
"value {src:?} cannot be written into local with type {} (ABI {abi:?})",
local_layout.ty
)
}
};
}
return Ok(());
}
Operand::Indirect(mplace) => {
// The local is in memory, go on below.
MPlaceTy { mplace: *mplace, layout }
}
}
} }
} }
Left(mplace) => mplace, // already referring to memory Left(mplace) => {
}; self.write_immediate_to_mplace_no_validate(src, mplace.layout, mplace.mplace)?;
}
// This is already in memory, write there. }
self.write_immediate_to_mplace_no_validate(src, mplace.layout, mplace.mplace) Ok(())
} }
/// Write an immediate to memory. /// Write an immediate to memory.
@ -673,6 +668,9 @@ fn write_immediate_to_mplace_no_validate(
layout: TyAndLayout<'tcx>, layout: TyAndLayout<'tcx>,
dest: MemPlace<M::Provenance>, dest: MemPlace<M::Provenance>,
) -> InterpResult<'tcx> { ) -> InterpResult<'tcx> {
if cfg!(debug_assertions) {
value.assert_matches_abi(layout.abi, self);
}
// Note that it is really important that the type here is the right one, and matches the // Note that it is really important that the type here is the right one, and matches the
// type things are read at. In case `value` is a `ScalarPair`, we don't do any magic here // type things are read at. In case `value` is a `ScalarPair`, we don't do any magic here
// to handle padding properly, which is only correct if we never look at this data with the // to handle padding properly, which is only correct if we never look at this data with the
@ -723,35 +721,18 @@ pub fn write_uninit(
&mut self, &mut self,
dest: &impl Writeable<'tcx, M::Provenance>, dest: &impl Writeable<'tcx, M::Provenance>,
) -> InterpResult<'tcx> { ) -> InterpResult<'tcx> {
let mplace = match dest.to_place().as_mplace_or_local() { match self.as_mplace_or_mutable_local(&dest.to_place())? {
Left(mplace) => mplace, Right((local_val, _local_layout)) => {
Right((local, offset, locals_addr, layout)) => { *local_val = Immediate::Uninit;
if offset.is_some() {
// This has been projected to a part of this local. We could have complicated
// logic to still keep this local as an `Operand`... but it's much easier to
// just fall back to the indirect path.
// FIXME: share the logic with `write_immediate_no_validate`.
dest.force_mplace(self)?
} else {
debug_assert_eq!(locals_addr, self.frame().locals_addr());
match self.frame_mut().locals[local].access_mut()? {
Operand::Immediate(local) => {
*local = Immediate::Uninit;
return Ok(());
}
Operand::Indirect(mplace) => {
// The local is in memory, go on below.
MPlaceTy { mplace: *mplace, layout }
}
}
}
} }
}; Left(mplace) => {
let Some(mut alloc) = self.get_place_alloc_mut(&mplace)? else { let Some(mut alloc) = self.get_place_alloc_mut(&mplace)? else {
// Zero-sized access // Zero-sized access
return Ok(()); return Ok(());
}; };
alloc.write_uninit()?; alloc.write_uninit()?;
}
}
Ok(()) Ok(())
} }

View File

@ -82,6 +82,7 @@ fn visit_variant(
self.visit_value(new_val) self.visit_value(new_val)
} }
/// Traversal logic; should not be overloaded.
fn walk_value(&mut self, v: &Self::V) -> InterpResult<'tcx> { fn walk_value(&mut self, v: &Self::V) -> InterpResult<'tcx> {
let ty = v.layout().ty; let ty = v.layout().ty;
trace!("walk_value: type: {ty}"); trace!("walk_value: type: {ty}");