Process current bucket instead of parent's bucket when starting loop for dominators.
This commit is contained in:
parent
2913ad6db0
commit
84339a6f05
@ -109,28 +109,27 @@ pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> {
|
|||||||
// they have been placed in the bucket.
|
// they have been placed in the bucket.
|
||||||
//
|
//
|
||||||
// We compute a partial set of immediate dominators here.
|
// We compute a partial set of immediate dominators here.
|
||||||
let z = parent[w];
|
for &v in bucket[w].iter() {
|
||||||
for &v in bucket[z].iter() {
|
|
||||||
// This uses the result of Lemma 5 from section 2 from the original
|
// This uses the result of Lemma 5 from section 2 from the original
|
||||||
// 1979 paper, to compute either the immediate or relative dominator
|
// 1979 paper, to compute either the immediate or relative dominator
|
||||||
// for a given vertex v.
|
// for a given vertex v.
|
||||||
//
|
//
|
||||||
// eval returns a vertex y, for which semi[y] is minimum among
|
// eval returns a vertex y, for which semi[y] is minimum among
|
||||||
// vertices semi[v] +> y *> v. Note that semi[v] = z as we're in the
|
// vertices semi[v] +> y *> v. Note that semi[v] = w as we're in the
|
||||||
// z bucket.
|
// w bucket.
|
||||||
//
|
//
|
||||||
// Given such a vertex y, semi[y] <= semi[v] and idom[y] = idom[v].
|
// Given such a vertex y, semi[y] <= semi[v] and idom[y] = idom[v].
|
||||||
// If semi[y] = semi[v], though, idom[v] = semi[v].
|
// If semi[y] = semi[v], though, idom[v] = semi[v].
|
||||||
//
|
//
|
||||||
// Using this, we can either set idom[v] to be:
|
// Using this, we can either set idom[v] to be:
|
||||||
// * semi[v] (i.e. z), if semi[y] is z
|
// * semi[v] (i.e. w), if semi[y] is w
|
||||||
// * idom[y], otherwise
|
// * idom[y], otherwise
|
||||||
//
|
//
|
||||||
// We don't directly set to idom[y] though as it's not necessarily
|
// We don't directly set to idom[y] though as it's not necessarily
|
||||||
// known yet. The second preorder traversal will cleanup by updating
|
// known yet. The second preorder traversal will cleanup by updating
|
||||||
// the idom for any that were missed in this pass.
|
// the idom for any that were missed in this pass.
|
||||||
let y = eval(&mut parent, lastlinked, &semi, &mut label, v);
|
let y = eval(&mut parent, lastlinked, &semi, &mut label, v);
|
||||||
idom[v] = if semi[y] < z { y } else { z };
|
idom[v] = if semi[y] < w { y } else { w };
|
||||||
}
|
}
|
||||||
|
|
||||||
// This loop computes the semi[w] for w.
|
// This loop computes the semi[w] for w.
|
||||||
@ -213,10 +212,11 @@ pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> {
|
|||||||
// If we don't yet know the idom directly, then push this vertex into
|
// If we don't yet know the idom directly, then push this vertex into
|
||||||
// our semidominator's bucket, where it will get processed at a later
|
// our semidominator's bucket, where it will get processed at a later
|
||||||
// stage to compute its immediate dominator.
|
// stage to compute its immediate dominator.
|
||||||
if parent[w] != semi[w] {
|
let z = parent[w];
|
||||||
|
if z != semi[w] {
|
||||||
bucket[semi[w]].push(w);
|
bucket[semi[w]].push(w);
|
||||||
} else {
|
} else {
|
||||||
idom[w] = parent[w];
|
idom[w] = z;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Optimization: We share the parent array between processed and not
|
// Optimization: We share the parent array between processed and not
|
||||||
|
@ -53,3 +53,30 @@ fn immediate_dominator() {
|
|||||||
assert_eq!(dominators.immediate_dominator(2), Some(1));
|
assert_eq!(dominators.immediate_dominator(2), Some(1));
|
||||||
assert_eq!(dominators.immediate_dominator(3), Some(2));
|
assert_eq!(dominators.immediate_dominator(3), Some(2));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn transitive_dominator() {
|
||||||
|
let graph = TestGraph::new(
|
||||||
|
0,
|
||||||
|
&[
|
||||||
|
// First tree branch.
|
||||||
|
(0, 1),
|
||||||
|
(1, 2),
|
||||||
|
(2, 3),
|
||||||
|
(3, 4),
|
||||||
|
// Second tree branch.
|
||||||
|
(1, 5),
|
||||||
|
(5, 6),
|
||||||
|
// Third tree branch.
|
||||||
|
(0, 7),
|
||||||
|
// These links make 0 the dominator for 2 and 3.
|
||||||
|
(7, 2),
|
||||||
|
(5, 3),
|
||||||
|
],
|
||||||
|
);
|
||||||
|
|
||||||
|
let dom_tree = dominators(&graph);
|
||||||
|
let immediate_dominators = &dom_tree.immediate_dominators;
|
||||||
|
assert_eq!(immediate_dominators[2], Some(0));
|
||||||
|
assert_eq!(immediate_dominators[3], Some(0)); // This used to return Some(1).
|
||||||
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user