Remove our unification code, use Chalk's instead

This commit is contained in:
Florian Diebold 2021-04-11 11:20:45 +02:00
parent eb08a27f1b
commit 84074cb185
8 changed files with 125 additions and 438 deletions

View File

@ -344,20 +344,20 @@ fn generator_witness_datum(
}
fn unification_database(&self) -> &dyn chalk_ir::UnificationDatabase<Interner> {
self
&self.db
}
}
impl<'a> chalk_ir::UnificationDatabase<Interner> for ChalkContext<'a> {
impl<'a> chalk_ir::UnificationDatabase<Interner> for &'a dyn HirDatabase {
fn fn_def_variance(
&self,
fn_def_id: chalk_ir::FnDefId<Interner>,
) -> chalk_ir::Variances<Interner> {
self.db.fn_def_variance(self.krate, fn_def_id)
HirDatabase::fn_def_variance(*self, fn_def_id)
}
fn adt_variance(&self, adt_id: chalk_ir::AdtId<Interner>) -> chalk_ir::Variances<Interner> {
self.db.adt_variance(self.krate, adt_id)
HirDatabase::adt_variance(*self, adt_id)
}
}
@ -651,11 +651,7 @@ pub(crate) fn fn_def_datum_query(
Arc::new(datum)
}
pub(crate) fn fn_def_variance_query(
db: &dyn HirDatabase,
_krate: CrateId,
fn_def_id: FnDefId,
) -> Variances {
pub(crate) fn fn_def_variance_query(db: &dyn HirDatabase, fn_def_id: FnDefId) -> Variances {
let callable_def: CallableDefId = from_chalk(db, fn_def_id);
let generic_params = generics(db.upcast(), callable_def.into());
Variances::from_iter(
@ -666,7 +662,6 @@ pub(crate) fn fn_def_variance_query(
pub(crate) fn adt_variance_query(
db: &dyn HirDatabase,
_krate: CrateId,
chalk_ir::AdtId(adt_id): AdtId,
) -> Variances {
let generic_params = generics(db.upcast(), adt_id.into());

View File

@ -117,10 +117,10 @@ fn struct_datum(
fn fn_def_datum(&self, krate: CrateId, fn_def_id: FnDefId) -> Arc<chalk_db::FnDefDatum>;
#[salsa::invoke(chalk_db::fn_def_variance_query)]
fn fn_def_variance(&self, krate: CrateId, fn_def_id: FnDefId) -> chalk_db::Variances;
fn fn_def_variance(&self, fn_def_id: FnDefId) -> chalk_db::Variances;
#[salsa::invoke(chalk_db::adt_variance_query)]
fn adt_variance(&self, krate: CrateId, adt_id: chalk_db::AdtId) -> chalk_db::Variances;
fn adt_variance(&self, adt_id: chalk_db::AdtId) -> chalk_db::Variances;
#[salsa::invoke(chalk_db::associated_ty_value_query)]
fn associated_ty_value(

View File

@ -217,7 +217,7 @@ struct InferenceContext<'a> {
owner: DefWithBodyId,
body: Arc<Body>,
resolver: Resolver,
table: unify::InferenceTable,
table: unify::InferenceTable<'a>,
trait_env: Arc<TraitEnvironment>,
obligations: Vec<DomainGoal>,
last_obligations_check: Option<u32>,
@ -252,15 +252,15 @@ fn find_breakable<'c>(
impl<'a> InferenceContext<'a> {
fn new(db: &'a dyn HirDatabase, owner: DefWithBodyId, resolver: Resolver) -> Self {
let trait_env =
owner.as_generic_def_id().map_or_else(Default::default, |d| db.trait_environment(d));
InferenceContext {
result: InferenceResult::default(),
table: unify::InferenceTable::new(),
table: unify::InferenceTable::new(db, trait_env.clone()),
obligations: Vec::default(),
last_obligations_check: None,
return_ty: TyKind::Error.intern(&Interner), // set in collect_fn_signature
trait_env: owner
.as_generic_def_id()
.map_or_else(Default::default, |d| db.trait_environment(d)),
trait_env,
db,
owner,
body: db.body(owner),
@ -346,17 +346,12 @@ fn insert_type_vars(&mut self, ty: Ty) -> Ty {
}
fn resolve_obligations_as_possible(&mut self) {
if self.last_obligations_check == Some(self.table.revision) {
// no change
return;
}
let _span = profile::span("resolve_obligations_as_possible");
self.last_obligations_check = Some(self.table.revision);
let obligations = mem::replace(&mut self.obligations, Vec::new());
for obligation in obligations {
let in_env = InEnvironment::new(&self.trait_env.env, obligation.clone());
let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
let canonicalized = self.canonicalize(in_env);
let solution =
self.db.trait_solve(self.resolver.krate().unwrap(), canonicalized.value.clone());
@ -395,6 +390,7 @@ fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.table.unify(ty1, ty2)
}
// FIXME get rid of this, instead resolve shallowly where necessary
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with

View File

@ -7,7 +7,7 @@
use chalk_ir::{cast::Cast, Mutability, TyVariableKind};
use hir_def::lang_item::LangItemTarget;
use crate::{autoderef, Canonical, Interner, Solution, Ty, TyBuilder, TyExt, TyKind};
use crate::{autoderef, Canonical, DomainGoal, Interner, Solution, Ty, TyBuilder, TyExt, TyKind};
use super::{InEnvironment, InferenceContext};
@ -141,10 +141,10 @@ fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option<bool> {
b.push(from_ty.clone()).push(to_ty.clone()).build()
};
let goal = InEnvironment::new(&self.trait_env.env, trait_ref.cast(&Interner));
let goal: InEnvironment<DomainGoal> =
InEnvironment::new(&self.trait_env.env, trait_ref.cast(&Interner));
let canonicalizer = self.canonicalizer();
let canonicalized = canonicalizer.canonicalize_obligation(goal);
let canonicalized = self.canonicalize(goal);
let solution = self.db.trait_solve(krate, canonicalized.value.clone())?;
@ -169,7 +169,7 @@ fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option<bool> {
///
/// Note that the parameters are already stripped the outer reference.
fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone());
let canonicalized = self.canonicalize(from_ty.clone());
let to_ty = self.resolve_ty_shallow(&to_ty);
// FIXME: Auto DerefMut
for derefed_ty in autoderef::autoderef(

View File

@ -98,7 +98,7 @@ fn callable_sig_from_fn_trait(&mut self, ty: &Ty, num_args: usize) -> Option<(Ve
goal: projection.trait_ref(self.db).cast(&Interner),
environment: trait_env,
};
let canonical = self.canonicalizer().canonicalize_obligation(obligation.clone());
let canonical = self.canonicalize(obligation.clone());
if self.db.trait_solve(krate, canonical.value).is_some() {
self.push_obligation(obligation.goal);
let return_ty = self.normalize_projection_ty(projection);
@ -297,7 +297,7 @@ fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
}
Expr::Call { callee, args } => {
let callee_ty = self.infer_expr(*callee, &Expectation::none());
let canonicalized = self.canonicalizer().canonicalize_ty(callee_ty.clone());
let canonicalized = self.canonicalize(callee_ty.clone());
let mut derefs = autoderef(
self.db,
self.resolver.krate(),
@ -442,7 +442,7 @@ fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
}
Expr::Field { expr, name } => {
let receiver_ty = self.infer_expr_inner(*expr, &Expectation::none());
let canonicalized = self.canonicalizer().canonicalize_ty(receiver_ty);
let canonicalized = self.canonicalize(receiver_ty);
let ty = autoderef::autoderef(
self.db,
self.resolver.krate(),
@ -559,7 +559,7 @@ fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
match op {
UnaryOp::Deref => match self.resolver.krate() {
Some(krate) => {
let canonicalized = self.canonicalizer().canonicalize_ty(inner_ty);
let canonicalized = self.canonicalize(inner_ty);
match autoderef::deref(
self.db,
krate,
@ -676,7 +676,7 @@ fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
if let (Some(index_trait), Some(krate)) =
(self.resolve_ops_index(), self.resolver.krate())
{
let canonicalized = self.canonicalizer().canonicalize_ty(base_ty);
let canonicalized = self.canonicalize(base_ty);
let self_ty = method_resolution::resolve_indexing_op(
self.db,
&canonicalized.value,
@ -852,7 +852,7 @@ fn infer_method_call(
generic_args: Option<&GenericArgs>,
) -> Ty {
let receiver_ty = self.infer_expr(receiver, &Expectation::none());
let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());

View File

@ -218,7 +218,7 @@ fn resolve_ty_assoc_item(
return Some(result);
}
let canonical_ty = self.canonicalizer().canonicalize_ty(ty.clone());
let canonical_ty = self.canonicalize(ty.clone());
let krate = self.resolver.krate()?;
let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());

View File

@ -1,133 +1,52 @@
//! Unification and canonicalization logic.
use std::borrow::Cow;
use std::{borrow::Cow, fmt, sync::Arc};
use chalk_ir::{
cast::Cast, fold::Fold, interner::HasInterner, FloatTy, IntTy, TyVariableKind, UniverseIndex,
VariableKind,
};
use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
use chalk_solve::infer::ParameterEnaVariableExt;
use ena::unify::UnifyKey;
use super::{DomainGoal, InferenceContext};
use super::InferenceContext;
use crate::{
fold_tys, static_lifetime, AliasEq, AliasTy, BoundVar, Canonical, CanonicalVarKinds,
DebruijnIndex, FnPointer, FnSubst, InEnvironment, InferenceVar, Interner, Scalar, Substitution,
Ty, TyExt, TyKind, WhereClause,
db::HirDatabase, fold_tys, static_lifetime, BoundVar, Canonical, DebruijnIndex, GenericArg,
InferenceVar, Interner, Scalar, Substitution, TraitEnvironment, Ty, TyKind,
};
impl<'a> InferenceContext<'a> {
pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b>
pub(super) fn canonicalize<T: Fold<Interner> + HasInterner<Interner = Interner>>(
&mut self,
t: T,
) -> Canonicalized<T::Result>
where
'a: 'b,
T::Result: HasInterner<Interner = Interner>,
{
Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
let result = self.table.var_unification_table.canonicalize(&Interner, t);
let free_vars = result
.free_vars
.into_iter()
.map(|free_var| free_var.to_generic_arg(&Interner))
.collect();
Canonicalized { value: result.quantified, free_vars }
}
}
pub(super) struct Canonicalizer<'a, 'b>
where
'a: 'b,
{
ctx: &'b mut InferenceContext<'a>,
free_vars: Vec<(InferenceVar, TyVariableKind)>,
/// A stack of type variables that is used to detect recursive types (which
/// are an error, but we need to protect against them to avoid stack
/// overflows).
var_stack: Vec<TypeVarId>,
}
#[derive(Debug)]
pub(super) struct Canonicalized<T>
where
T: HasInterner<Interner = Interner>,
{
pub(super) value: Canonical<T>,
free_vars: Vec<(InferenceVar, TyVariableKind)>,
}
impl<'a, 'b> Canonicalizer<'a, 'b> {
fn add(&mut self, free_var: InferenceVar, kind: TyVariableKind) -> usize {
self.free_vars.iter().position(|&(v, _)| v == free_var).unwrap_or_else(|| {
let next_index = self.free_vars.len();
self.free_vars.push((free_var, kind));
next_index
})
}
fn do_canonicalize<T: Fold<Interner, Result = T> + HasInterner<Interner = Interner>>(
&mut self,
t: T,
binders: DebruijnIndex,
) -> T {
fold_tys(
t,
|ty, binders| match ty.kind(&Interner) {
&TyKind::InferenceVar(var, kind) => {
let inner = from_inference_var(var);
if self.var_stack.contains(&inner) {
// recursive type
return self.ctx.table.type_variable_table.fallback_value(var, kind);
}
if let Some(known_ty) =
self.ctx.table.var_unification_table.inlined_probe_value(inner).known()
{
self.var_stack.push(inner);
let result = self.do_canonicalize(known_ty.clone(), binders);
self.var_stack.pop();
result
} else {
let root = self.ctx.table.var_unification_table.find(inner);
let position = self.add(to_inference_var(root), kind);
TyKind::BoundVar(BoundVar::new(binders, position)).intern(&Interner)
}
}
_ => ty,
},
binders,
)
}
fn into_canonicalized<T: HasInterner<Interner = Interner>>(
self,
result: T,
) -> Canonicalized<T> {
let kinds = self
.free_vars
.iter()
.map(|&(_, k)| chalk_ir::WithKind::new(VariableKind::Ty(k), UniverseIndex::ROOT));
Canonicalized {
value: Canonical {
value: result,
binders: CanonicalVarKinds::from_iter(&Interner, kinds),
},
free_vars: self.free_vars,
}
}
pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
let result = self.do_canonicalize(ty, DebruijnIndex::INNERMOST);
self.into_canonicalized(result)
}
pub(crate) fn canonicalize_obligation(
mut self,
obligation: InEnvironment<DomainGoal>,
) -> Canonicalized<InEnvironment<DomainGoal>> {
let result = match obligation.goal {
DomainGoal::Holds(wc) => {
DomainGoal::Holds(self.do_canonicalize(wc, DebruijnIndex::INNERMOST))
}
_ => unimplemented!(),
};
self.into_canonicalized(InEnvironment { goal: result, environment: obligation.environment })
}
free_vars: Vec<GenericArg>,
}
impl<T: HasInterner<Interner = Interner>> Canonicalized<T> {
pub(super) fn decanonicalize_ty(&self, ty: Ty) -> Ty {
crate::fold_free_vars(ty, |bound, _binders| {
let (v, k) = self.free_vars[bound.index];
TyKind::InferenceVar(v, k).intern(&Interner)
let var = self.free_vars[bound.index];
var.assert_ty_ref(&Interner).clone()
})
}
@ -155,23 +74,29 @@ pub(super) fn apply_solution(
}),
);
for (i, ty) in solution.value.iter(&Interner).enumerate() {
let (v, k) = self.free_vars[i];
// FIXME: deal with non-type vars here -- the only problematic part is the normalization
// and maybe we don't need that with lazy normalization?
let var = self.free_vars[i];
// eagerly replace projections in the type; we may be getting types
// e.g. from where clauses where this hasn't happened yet
let ty = ctx.normalize_associated_types_in(
new_vars.apply(ty.assert_ty_ref(&Interner).clone(), &Interner),
);
ctx.table.unify(&TyKind::InferenceVar(v, k).intern(&Interner), &ty);
ctx.table.unify(var.assert_ty_ref(&Interner), &ty);
}
}
}
pub fn could_unify(t1: &Ty, t2: &Ty) -> bool {
InferenceTable::new().unify(t1, t2)
pub fn could_unify(db: &dyn HirDatabase, env: Arc<TraitEnvironment>, t1: &Ty, t2: &Ty) -> bool {
InferenceTable::new(db, env).unify(t1, t2)
}
pub(crate) fn unify(tys: &Canonical<(Ty, Ty)>) -> Option<Substitution> {
let mut table = InferenceTable::new();
pub(crate) fn unify(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> Option<Substitution> {
let mut table = InferenceTable::new(db, env);
let vars = Substitution::from_iter(
&Interner,
tys.binders
@ -214,16 +139,16 @@ fn push(&mut self, data: TypeVariableData) {
}
pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) {
self.inner[from_inference_var(iv).0 as usize].diverging = diverging;
self.inner[iv.index() as usize].diverging = diverging;
}
fn is_diverging(&mut self, iv: InferenceVar) -> bool {
self.inner[from_inference_var(iv).0 as usize].diverging
self.inner[iv.index() as usize].diverging
}
fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
match kind {
_ if self.inner[from_inference_var(iv).0 as usize].diverging => TyKind::Never,
_ if self.inner[iv.index() as usize].diverging => TyKind::Never,
TyVariableKind::General => TyKind::Error,
TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
@ -237,27 +162,35 @@ pub(crate) struct TypeVariableData {
diverging: bool,
}
#[derive(Clone, Debug)]
pub(crate) struct InferenceTable {
pub(super) var_unification_table: InPlaceUnificationTable<TypeVarId>,
type ChalkInferenceTable = chalk_solve::infer::InferenceTable<Interner>;
#[derive(Clone)]
pub(crate) struct InferenceTable<'a> {
db: &'a dyn HirDatabase,
trait_env: Arc<TraitEnvironment>,
pub(super) var_unification_table: ChalkInferenceTable,
pub(super) type_variable_table: TypeVariableTable,
pub(super) revision: u32,
}
impl InferenceTable {
pub(crate) fn new() -> Self {
impl<'a> InferenceTable<'a> {
pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc<TraitEnvironment>) -> Self {
InferenceTable {
var_unification_table: InPlaceUnificationTable::new(),
db,
trait_env,
var_unification_table: ChalkInferenceTable::new(),
type_variable_table: TypeVariableTable { inner: Vec::new() },
revision: 0,
}
}
fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
self.type_variable_table.push(TypeVariableData { diverging });
let key = self.var_unification_table.new_key(TypeVarValue::Unknown);
assert_eq!(key.0 as usize, self.type_variable_table.inner.len() - 1);
TyKind::InferenceVar(to_inference_var(key), kind).intern(&Interner)
let var = self.var_unification_table.new_variable(UniverseIndex::ROOT);
self.type_variable_table.inner.extend(
(0..1 + var.index() as usize - self.type_variable_table.inner.len())
.map(|_| TypeVariableData { diverging: false }),
);
assert_eq!(var.index() as usize, self.type_variable_table.inner.len() - 1);
self.type_variable_table.inner[var.index() as usize].diverging = diverging;
var.to_ty_with_kind(&Interner, kind)
}
pub(crate) fn new_type_var(&mut self) -> Ty {
@ -280,240 +213,59 @@ pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
self.resolve_ty_completely_inner(&mut Vec::new(), ty)
}
// FIXME get rid of this, instead resolve shallowly where necessary
pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
self.resolve_ty_as_possible_inner(&mut Vec::new(), ty)
}
pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.unify_inner(ty1, ty2, 0)
}
pub(crate) fn unify_substs(
&mut self,
substs1: &Substitution,
substs2: &Substitution,
depth: usize,
) -> bool {
substs1.iter(&Interner).zip(substs2.iter(&Interner)).all(|(t1, t2)| {
self.unify_inner(t1.assert_ty_ref(&Interner), t2.assert_ty_ref(&Interner), depth)
})
}
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
if depth > 1000 {
// prevent stackoverflows
panic!("infinite recursion in unification");
}
if ty1 == ty2 {
return true;
}
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
if ty1.equals_ctor(&ty2) {
match (ty1.kind(&Interner), ty2.kind(&Interner)) {
(TyKind::Adt(_, substs1), TyKind::Adt(_, substs2))
| (TyKind::FnDef(_, substs1), TyKind::FnDef(_, substs2))
| (
TyKind::Function(FnPointer { substitution: FnSubst(substs1), .. }),
TyKind::Function(FnPointer { substitution: FnSubst(substs2), .. }),
)
| (TyKind::Tuple(_, substs1), TyKind::Tuple(_, substs2))
| (TyKind::OpaqueType(_, substs1), TyKind::OpaqueType(_, substs2))
| (TyKind::AssociatedType(_, substs1), TyKind::AssociatedType(_, substs2))
| (TyKind::Closure(.., substs1), TyKind::Closure(.., substs2)) => {
self.unify_substs(substs1, substs2, depth + 1)
}
(TyKind::Array(ty1, c1), TyKind::Array(ty2, c2)) if c1 == c2 => {
self.unify_inner(ty1, ty2, depth + 1)
}
(TyKind::Ref(_, _, ty1), TyKind::Ref(_, _, ty2))
| (TyKind::Raw(_, ty1), TyKind::Raw(_, ty2))
| (TyKind::Slice(ty1), TyKind::Slice(ty2)) => self.unify_inner(ty1, ty2, depth + 1),
_ => true, /* we checked equals_ctor already */
}
} else if let (TyKind::Closure(.., substs1), TyKind::Closure(.., substs2)) =
(ty1.kind(&Interner), ty2.kind(&Interner))
{
self.unify_substs(substs1, substs2, depth + 1)
} else {
self.unify_inner_trivial(&ty1, &ty2, depth)
}
}
pub(super) fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
match (ty1.kind(&Interner), ty2.kind(&Interner)) {
(TyKind::Error, _) | (_, TyKind::Error) => true,
(TyKind::Placeholder(p1), TyKind::Placeholder(p2)) if *p1 == *p2 => true,
(TyKind::Dyn(dyn1), TyKind::Dyn(dyn2))
if dyn1.bounds.skip_binders().interned().len()
== dyn2.bounds.skip_binders().interned().len() =>
{
for (pred1, pred2) in dyn1
.bounds
.skip_binders()
.interned()
.iter()
.zip(dyn2.bounds.skip_binders().interned().iter())
{
if !self.unify_preds(pred1.skip_binders(), pred2.skip_binders(), depth + 1) {
return false;
}
}
true
}
(
TyKind::InferenceVar(tv1, TyVariableKind::General),
TyKind::InferenceVar(tv2, TyVariableKind::General),
)
| (
TyKind::InferenceVar(tv1, TyVariableKind::Integer),
TyKind::InferenceVar(tv2, TyVariableKind::Integer),
)
| (
TyKind::InferenceVar(tv1, TyVariableKind::Float),
TyKind::InferenceVar(tv2, TyVariableKind::Float),
) if self.type_variable_table.is_diverging(*tv1)
== self.type_variable_table.is_diverging(*tv2) =>
{
// both type vars are unknown since we tried to resolve them
if !self
.var_unification_table
.unioned(from_inference_var(*tv1), from_inference_var(*tv2))
{
self.var_unification_table
.union(from_inference_var(*tv1), from_inference_var(*tv2));
self.revision += 1;
}
true
}
// The order of MaybeNeverTypeVar matters here.
// Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
// Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
(TyKind::InferenceVar(tv, TyVariableKind::General), other)
| (other, TyKind::InferenceVar(tv, TyVariableKind::General))
| (
TyKind::InferenceVar(tv, TyVariableKind::Integer),
other @ TyKind::Scalar(Scalar::Int(_)),
)
| (
other @ TyKind::Scalar(Scalar::Int(_)),
TyKind::InferenceVar(tv, TyVariableKind::Integer),
)
| (
TyKind::InferenceVar(tv, TyVariableKind::Integer),
other @ TyKind::Scalar(Scalar::Uint(_)),
)
| (
other @ TyKind::Scalar(Scalar::Uint(_)),
TyKind::InferenceVar(tv, TyVariableKind::Integer),
)
| (
TyKind::InferenceVar(tv, TyVariableKind::Float),
other @ TyKind::Scalar(Scalar::Float(_)),
)
| (
other @ TyKind::Scalar(Scalar::Float(_)),
TyKind::InferenceVar(tv, TyVariableKind::Float),
) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(
from_inference_var(*tv),
TypeVarValue::Known(other.clone().intern(&Interner)),
let result = self.var_unification_table.relate(
&Interner,
&self.db,
&self.trait_env.env,
chalk_ir::Variance::Invariant,
ty1,
ty2,
);
self.revision += 1;
true
}
_ => false,
}
}
fn unify_preds(&mut self, pred1: &WhereClause, pred2: &WhereClause, depth: usize) -> bool {
match (pred1, pred2) {
(WhereClause::Implemented(tr1), WhereClause::Implemented(tr2))
if tr1.trait_id == tr2.trait_id =>
{
self.unify_substs(&tr1.substitution, &tr2.substitution, depth + 1)
}
(
WhereClause::AliasEq(AliasEq { alias: alias1, ty: ty1 }),
WhereClause::AliasEq(AliasEq { alias: alias2, ty: ty2 }),
) => {
let (substitution1, substitution2) = match (alias1, alias2) {
(AliasTy::Projection(projection_ty1), AliasTy::Projection(projection_ty2))
if projection_ty1.associated_ty_id == projection_ty2.associated_ty_id =>
{
(&projection_ty1.substitution, &projection_ty2.substitution)
}
(AliasTy::Opaque(opaque1), AliasTy::Opaque(opaque2))
if opaque1.opaque_ty_id == opaque2.opaque_ty_id =>
{
(&opaque1.substitution, &opaque2.substitution)
}
_ => return false,
let result = if let Ok(r) = result {
r
} else {
return false;
};
self.unify_substs(&substitution1, &substitution2, depth + 1)
&& self.unify_inner(&ty1, &ty2, depth + 1)
}
_ => false,
}
// TODO deal with new goals
true
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
// FIXME this could probably just return Ty
pub(crate) fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
let mut ty = Cow::Borrowed(ty);
// The type variable could resolve to a int/float variable. Hence try
// resolving up to three times; each type of variable shouldn't occur
// more than once
for i in 0..3 {
if i > 0 {
cov_mark::hit!(type_var_resolves_to_int_var);
}
match ty.kind(&Interner) {
TyKind::InferenceVar(tv, _) => {
let inner = from_inference_var(*tv);
match self.var_unification_table.inlined_probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
ty = Cow::Owned(known_ty.clone());
}
_ => return ty,
}
}
_ => return ty,
}
}
log::error!("Inference variable still not resolved: {:?}", ty);
ty
self.var_unification_table
.normalize_ty_shallow(&Interner, ty)
.map_or(Cow::Borrowed(ty), Cow::Owned)
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<InferenceVar>, ty: Ty) -> Ty {
fold_tys(
ty,
|ty, _| match ty.kind(&Interner) {
&TyKind::InferenceVar(tv, kind) => {
let inner = from_inference_var(tv);
if tv_stack.contains(&inner) {
if tv_stack.contains(&tv) {
cov_mark::hit!(type_var_cycles_resolve_as_possible);
// recursive type
return self.type_variable_table.fallback_value(tv, kind);
}
if let Some(known_ty) =
self.var_unification_table.inlined_probe_value(inner).known()
{
if let Some(known_ty) = self.var_unification_table.probe_var(tv) {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible_inner(tv_stack, known_ty.clone());
tv_stack.push(tv);
let result = self.resolve_ty_as_possible_inner(
tv_stack,
known_ty.assert_ty_ref(&Interner).clone(),
);
tv_stack.pop();
result
} else {
@ -528,23 +280,24 @@ fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty
/// Resolves the type completely; type variables without known type are
/// replaced by TyKind::Unknown.
fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec<InferenceVar>, ty: Ty) -> Ty {
// FIXME implement as a proper Folder, handle lifetimes and consts as well
fold_tys(
ty,
|ty, _| match ty.kind(&Interner) {
&TyKind::InferenceVar(tv, kind) => {
let inner = from_inference_var(tv);
if tv_stack.contains(&inner) {
if tv_stack.contains(&tv) {
cov_mark::hit!(type_var_cycles_resolve_completely);
// recursive type
return self.type_variable_table.fallback_value(tv, kind);
}
if let Some(known_ty) =
self.var_unification_table.inlined_probe_value(inner).known()
{
if let Some(known_ty) = self.var_unification_table.probe_var(tv) {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely_inner(tv_stack, known_ty.clone());
tv_stack.push(tv);
let result = self.resolve_ty_completely_inner(
tv_stack,
known_ty.assert_ty_ref(&Interner).clone(),
);
tv_stack.pop();
result
} else {
@ -558,68 +311,10 @@ fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty)
}
}
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub(super) struct TypeVarId(pub(super) u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
fn from_inference_var(var: InferenceVar) -> TypeVarId {
TypeVarId(var.index())
}
fn to_inference_var(TypeVarId(index): TypeVarId) -> InferenceVar {
index.into()
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub(super) enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
impl<'a> fmt::Debug for InferenceTable<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("InferenceTable")
.field("num_vars", &self.type_variable_table.inner.len())
.finish()
}
}

View File

@ -798,7 +798,8 @@ pub(crate) fn inherent_impl_substs(
binders: CanonicalVarKinds::from_iter(&Interner, kinds),
value: (self_ty_with_vars, self_ty.value.clone()),
};
let substs = super::infer::unify(&tys)?;
let trait_env = Arc::new(TraitEnvironment::default()); // FIXME
let substs = super::infer::unify(db, trait_env, &tys)?;
// We only want the substs for the vars we added, not the ones from self_ty.
// Also, if any of the vars we added are still in there, we replace them by
// Unknown. I think this can only really happen if self_ty contained