Avoid lowering code under dead SwitchInt targets

This commit is contained in:
Ben Kimock 2024-02-21 18:58:12 -05:00
parent a165f1f650
commit 81d630453b
6 changed files with 214 additions and 4 deletions

View File

@ -1237,6 +1237,16 @@ pub fn codegen_block(&mut self, mut bb: mir::BasicBlock) {
}
}
pub fn codegen_block_as_unreachable(&mut self, bb: mir::BasicBlock) {
let llbb = match self.try_llbb(bb) {
Some(llbb) => llbb,
None => return,
};
let bx = &mut Bx::build(self.cx, llbb);
debug!("codegen_block_as_unreachable({:?})", bb);
bx.unreachable();
}
fn codegen_terminator(
&mut self,
bx: &mut Bx,

View File

@ -256,13 +256,22 @@ pub fn codegen_mir<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
// Apply debuginfo to the newly allocated locals.
fx.debug_introduce_locals(&mut start_bx);
let reachable_blocks = mir.reachable_blocks_in_mono(cx.tcx(), instance);
// The builders will be created separately for each basic block at `codegen_block`.
// So drop the builder of `start_llbb` to avoid having two at the same time.
drop(start_bx);
// Codegen the body of each block using reverse postorder
for (bb, _) in traversal::reverse_postorder(mir) {
fx.codegen_block(bb);
if reachable_blocks.contains(bb) {
fx.codegen_block(bb);
} else {
// This may have references to things we didn't monomorphize, so we
// don't actually codegen the body. We still create the block so
// terminators in other blocks can reference it without worry.
fx.codegen_block_as_unreachable(bb);
}
}
}

View File

@ -10,7 +10,7 @@
use crate::ty::print::{FmtPrinter, Printer};
use crate::ty::visit::TypeVisitableExt;
use crate::ty::{self, List, Ty, TyCtxt};
use crate::ty::{AdtDef, InstanceDef, UserTypeAnnotationIndex};
use crate::ty::{AdtDef, Instance, InstanceDef, UserTypeAnnotationIndex};
use crate::ty::{GenericArg, GenericArgsRef};
use rustc_data_structures::captures::Captures;
@ -27,6 +27,8 @@
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_index::bit_set::BitSet;
use rustc_index::{Idx, IndexSlice, IndexVec};
use rustc_serialize::{Decodable, Encodable};
use rustc_span::symbol::Symbol;
@ -640,6 +642,129 @@ pub fn is_custom_mir(&self) -> bool {
self.injection_phase.is_some()
}
/// Finds which basic blocks are actually reachable for a specific
/// monomorphization of this body.
///
/// This is allowed to have false positives; just because this says a block
/// is reachable doesn't mean that's necessarily true. It's thus always
/// legal for this to return a filled set.
///
/// Regardless, the [`BitSet::domain_size`] of the returned set will always
/// exactly match the number of blocks in the body so that `contains`
/// checks can be done without worrying about panicking.
///
/// This is mostly useful because it lets us skip lowering the `false` side
/// of `if <T as Trait>::CONST`, as well as `intrinsics::debug_assertions`.
pub fn reachable_blocks_in_mono(
&self,
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
) -> BitSet<BasicBlock> {
let mut set = BitSet::new_empty(self.basic_blocks.len());
self.reachable_blocks_in_mono_from(tcx, instance, &mut set, START_BLOCK);
set
}
fn reachable_blocks_in_mono_from(
&self,
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
set: &mut BitSet<BasicBlock>,
bb: BasicBlock,
) {
if !set.insert(bb) {
return;
}
let data = &self.basic_blocks[bb];
if let Some((bits, targets)) = Self::try_const_mono_switchint(tcx, instance, data) {
let target = targets.target_for_value(bits);
ensure_sufficient_stack(|| {
self.reachable_blocks_in_mono_from(tcx, instance, set, target)
});
return;
}
for target in data.terminator().successors() {
ensure_sufficient_stack(|| {
self.reachable_blocks_in_mono_from(tcx, instance, set, target)
});
}
}
/// If this basic block ends with a [`TerminatorKind::SwitchInt`] for which we can evaluate the
/// dimscriminant in monomorphization, we return the discriminant bits and the
/// [`SwitchTargets`], just so the caller doesn't also have to match on the terminator.
fn try_const_mono_switchint<'a>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
block: &'a BasicBlockData<'tcx>,
) -> Option<(u128, &'a SwitchTargets)> {
// There are two places here we need to evaluate a constant.
let eval_mono_const = |constant: &ConstOperand<'tcx>| {
let env = ty::ParamEnv::reveal_all();
let mono_literal = instance.instantiate_mir_and_normalize_erasing_regions(
tcx,
env,
crate::ty::EarlyBinder::bind(constant.const_),
);
let Some(bits) = mono_literal.try_eval_bits(tcx, env) else {
bug!("Couldn't evaluate constant {:?} in mono {:?}", constant, instance);
};
bits
};
let TerminatorKind::SwitchInt { discr, targets } = &block.terminator().kind else {
return None;
};
// If this is a SwitchInt(const _), then we can just evaluate the constant and return.
let discr = match discr {
Operand::Constant(constant) => {
let bits = eval_mono_const(constant);
return Some((bits, targets));
}
Operand::Move(place) | Operand::Copy(place) => place,
};
// MIR for `if false` actually looks like this:
// _1 = const _
// SwitchInt(_1)
//
// And MIR for if intrinsics::debug_assertions() looks like this:
// _1 = cfg!(debug_assertions)
// SwitchInt(_1)
//
// So we're going to try to recognize this pattern.
//
// If we have a SwitchInt on a non-const place, we find the most recent statement that
// isn't a storage marker. If that statement is an assignment of a const to our
// discriminant place, we evaluate and return the const, as if we've const-propagated it
// into the SwitchInt.
let last_stmt = block.statements.iter().rev().find(|stmt| {
!matches!(stmt.kind, StatementKind::StorageDead(_) | StatementKind::StorageLive(_))
})?;
let (place, rvalue) = last_stmt.kind.as_assign()?;
if discr != place {
return None;
}
match rvalue {
Rvalue::NullaryOp(NullOp::UbCheck(_), _) => {
Some((tcx.sess.opts.debug_assertions as u128, targets))
}
Rvalue::Use(Operand::Constant(constant)) => {
let bits = eval_mono_const(constant);
Some((bits, targets))
}
_ => None,
}
}
/// For a `Location` in this scope, determine what the "caller location" at that point is. This
/// is interesting because of inlining: the `#[track_caller]` attribute of inlined functions
/// must be honored. Falls back to the `tracked_caller` value for `#[track_caller]` functions,

View File

@ -1,5 +1,3 @@
use rustc_index::bit_set::BitSet;
use super::*;
/// Preorder traversal of a graph.

View File

@ -0,0 +1,27 @@
//@ compile-flags: -Cno-prepopulate-passes -Copt-level=0 -Cdebug-assertions=no
// This test ensures that in a debug build which turns off debug assertions, we do not monomorphize
// any of the standard library's unsafe precondition checks.
// The naive codegen of those checks contains the actual check underneath an `if false`, which
// could be optimized out if optimizations are enabled. But if we rely on optimizations to remove
// panic branches, then we can't link compiler_builtins without optimizing it, which means that
// -Zbuild-std doesn't work with -Copt-level=0.
//
// In other words, this tests for a mandatory optimization.
#![crate_type = "lib"]
use std::ptr::NonNull;
// CHECK-LABEL: ; core::ptr::non_null::NonNull<T>::new_unchecked
// CHECK-NOT: call
// CHECK: }
// CHECK-LABEL: @nonnull_new
#[no_mangle]
pub unsafe fn nonnull_new(ptr: *mut u8) -> NonNull<u8> {
// CHECK: ; call core::ptr::non_null::NonNull<T>::new_unchecked
unsafe {
NonNull::new_unchecked(ptr)
}
}

View File

@ -0,0 +1,41 @@
//@ compile-flags: -Cno-prepopulate-passes -Copt-level=0
#![crate_type = "lib"]
#[no_mangle]
pub fn demo_for_i32() {
generic_impl::<i32>();
}
// Two important things here:
// - We replace the "then" block with `unreachable` to avoid linking problems
// - We neither declare nor define the `big_impl` that said block "calls".
// CHECK-LABEL: ; skip_mono_inside_if_false::generic_impl
// CHECK: start:
// CHECK-NEXT: br label %[[ELSE_BRANCH:bb[0-9]+]]
// CHECK: [[ELSE_BRANCH]]:
// CHECK-NEXT: call skip_mono_inside_if_false::small_impl
// CHECK: bb{{[0-9]+}}:
// CHECK-NEXT: ret void
// CHECK: bb{{[0-9+]}}:
// CHECK-NEXT: unreachable
fn generic_impl<T>() {
trait MagicTrait {
const IS_BIG: bool;
}
impl<T> MagicTrait for T {
const IS_BIG: bool = std::mem::size_of::<T>() > 10;
}
if T::IS_BIG {
big_impl::<T>();
} else {
small_impl::<T>();
}
}
#[inline(never)]
fn small_impl<T>() {}
#[inline(never)]
fn big_impl<T>() {}