Speed up checked_isqrt and isqrt methods

* Use a lookup table for 8-bit integers and the Karatsuba square root
  algorithm for larger integers.
* Include optimization hints that give the compiler the exact numeric
  range of results.
This commit is contained in:
Chai T. Rex 2024-08-26 01:36:25 -04:00
parent 0cac915211
commit 7af8e218da
5 changed files with 371 additions and 35 deletions

View File

@ -1641,7 +1641,33 @@ pub const fn checked_isqrt(self) -> Option<Self> {
if self < 0 {
None
} else {
Some((self as $UnsignedT).isqrt() as Self)
// SAFETY: Input is nonnegative in this `else` branch.
let result = unsafe {
crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT
};
// Inform the optimizer what the range of outputs is. If
// testing `core` crashes with no panic message and a
// `num::int_sqrt::i*` test failed, it's because your edits
// caused these assertions to become false.
//
// SAFETY: Integer square root is a monotonically nondecreasing
// function, which means that increasing the input will never
// cause the output to decrease. Thus, since the input for
// nonnegative signed integers is bounded by
// `[0, <$ActualT>::MAX]`, sqrt(n) will be bounded by
// `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
unsafe {
// SAFETY: `<$ActualT>::MAX` is nonnegative.
const MAX_RESULT: $SelfT = unsafe {
crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT
};
crate::hint::assert_unchecked(result >= 0);
crate::hint::assert_unchecked(result <= MAX_RESULT);
}
Some(result)
}
}
@ -2862,15 +2888,11 @@ pub const fn pow(self, mut exp: u32) -> Self {
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
#[track_caller]
pub const fn isqrt(self) -> Self {
// I would like to implement it as
// ```
// self.checked_isqrt().expect("argument of integer square root must be non-negative")
// ```
// but `expect` is not yet stable as a `const fn`.
match self.checked_isqrt() {
Some(sqrt) => sqrt,
None => panic!("argument of integer square root must be non-negative"),
None => crate::num::int_sqrt::panic_for_negative_argument(),
}
}

View File

@ -0,0 +1,316 @@
//! These functions use the [Karatsuba square root algorithm][1] to compute the
//! [integer square root](https://en.wikipedia.org/wiki/Integer_square_root)
//! for the primitive integer types.
//!
//! The signed integer functions can only handle **nonnegative** inputs, so
//! that must be checked before calling those.
//!
//! [1]: <https://web.archive.org/web/20230511212802/https://inria.hal.science/inria-00072854v1/file/RR-3805.pdf>
//! "Paul Zimmermann. Karatsuba Square Root. \[Research Report\] RR-3805,
//! INRIA. 1999, pp.8. (inria-00072854)"
/// This array stores the [integer square roots](
/// https://en.wikipedia.org/wiki/Integer_square_root) and remainders of each
/// [`u8`](prim@u8) value. For example, `U8_ISQRT_WITH_REMAINDER[17]` will be
/// `(4, 1)` because the integer square root of 17 is 4 and because 17 is 1
/// higher than 4 squared.
const U8_ISQRT_WITH_REMAINDER: [(u8, u8); 256] = {
let mut result = [(0, 0); 256];
let mut n: usize = 0;
let mut isqrt_n: usize = 0;
while n < result.len() {
result[n] = (isqrt_n as u8, (n - isqrt_n.pow(2)) as u8);
n += 1;
if n == (isqrt_n + 1).pow(2) {
isqrt_n += 1;
}
}
result
};
/// Returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any [`u8`](prim@u8)
/// input.
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn u8(n: u8) -> u8 {
U8_ISQRT_WITH_REMAINDER[n as usize].0
}
/// Generates an `i*` function that returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any **nonnegative**
/// input of a specific signed integer type.
macro_rules! signed_fn {
($SignedT:ident, $UnsignedT:ident) => {
/// Returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any
/// **nonnegative**
#[doc = concat!("[`", stringify!($SignedT), "`](prim@", stringify!($SignedT), ")")]
/// input.
///
/// # Safety
///
/// This results in undefined behavior when the input is negative.
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const unsafe fn $SignedT(n: $SignedT) -> $SignedT {
debug_assert!(n >= 0, "Negative input inside `isqrt`.");
$UnsignedT(n as $UnsignedT) as $SignedT
}
};
}
signed_fn!(i8, u8);
signed_fn!(i16, u16);
signed_fn!(i32, u32);
signed_fn!(i64, u64);
signed_fn!(i128, u128);
/// Generates a `u*` function that returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any input of
/// a specific unsigned integer type.
macro_rules! unsigned_fn {
($UnsignedT:ident, $HalfBitsT:ident, $stages:ident) => {
/// Returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any
#[doc = concat!("[`", stringify!($UnsignedT), "`](prim@", stringify!($UnsignedT), ")")]
/// input.
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn $UnsignedT(mut n: $UnsignedT) -> $UnsignedT {
if n <= <$HalfBitsT>::MAX as $UnsignedT {
$HalfBitsT(n as $HalfBitsT) as $UnsignedT
} else {
// The normalization shift satisfies the Karatsuba square root
// algorithm precondition "a₃ ≥ b/4" where a₃ is the most
// significant quarter of `n`'s bits and b is the number of
// values that can be represented by that quarter of the bits.
//
// b/4 would then be all 0s except the second most significant
// bit (010...0) in binary. Since a₃ must be at least b/4, a₃'s
// most significant bit or its neighbor must be a 1. Since a₃'s
// most significant bits are `n`'s most significant bits, the
// same applies to `n`.
//
// The reason to shift by an even number of bits is because an
// even number of bits produces the square root shifted to the
// left by half of the normalization shift:
//
// sqrt(n << (2 * p))
// sqrt(2.pow(2 * p) * n)
// sqrt(2.pow(2 * p)) * sqrt(n)
// 2.pow(p) * sqrt(n)
// sqrt(n) << p
//
// Shifting by an odd number of bits leaves an ugly sqrt(2)
// multiplied in:
//
// sqrt(n << (2 * p + 1))
// sqrt(2.pow(2 * p + 1) * n)
// sqrt(2 * 2.pow(2 * p) * n)
// sqrt(2) * sqrt(2.pow(2 * p)) * sqrt(n)
// sqrt(2) * 2.pow(p) * sqrt(n)
// sqrt(2) * (sqrt(n) << p)
const EVEN_MAKING_BITMASK: u32 = !1;
let normalization_shift = n.leading_zeros() & EVEN_MAKING_BITMASK;
n <<= normalization_shift;
let s = $stages(n);
let denormalization_shift = normalization_shift >> 1;
s >> denormalization_shift
}
}
};
}
/// Generates the first stage of the computation after normalization.
///
/// # Safety
///
/// `$n` must be nonzero.
macro_rules! first_stage {
($original_bits:literal, $n:ident) => {{
debug_assert!($n != 0, "`$n` is zero in `first_stage!`.");
const N_SHIFT: u32 = $original_bits - 8;
let n = $n >> N_SHIFT;
let (s, r) = U8_ISQRT_WITH_REMAINDER[n as usize];
// Inform the optimizer that `s` is nonzero. This will allow it to
// avoid generating code to handle division-by-zero panics in the next
// stage.
//
// SAFETY: If the original `$n` is zero, the top of the `unsigned_fn`
// macro recurses instead of continuing to this point, so the original
// `$n` wasn't a 0 if we've reached here.
//
// Then the `unsigned_fn` macro normalizes `$n` so that at least one of
// its two most-significant bits is a 1.
//
// Then this stage puts the eight most-significant bits of `$n` into
// `n`. This means that `n` here has at least one 1 bit in its two
// most-significant bits, making `n` nonzero.
//
// `U8_ISQRT_WITH_REMAINDER[n as usize]` will give a nonzero `s` when
// given a nonzero `n`.
unsafe { crate::hint::assert_unchecked(s != 0) };
(s, r)
}};
}
/// Generates a middle stage of the computation.
///
/// # Safety
///
/// `$s` must be nonzero.
macro_rules! middle_stage {
($original_bits:literal, $ty:ty, $n:ident, $s:ident, $r:ident) => {{
debug_assert!($s != 0, "`$s` is zero in `middle_stage!`.");
const N_SHIFT: u32 = $original_bits - <$ty>::BITS;
let n = ($n >> N_SHIFT) as $ty;
const HALF_BITS: u32 = <$ty>::BITS >> 1;
const QUARTER_BITS: u32 = <$ty>::BITS >> 2;
const LOWER_HALF_1_BITS: $ty = (1 << HALF_BITS) - 1;
const LOWEST_QUARTER_1_BITS: $ty = (1 << QUARTER_BITS) - 1;
let lo = n & LOWER_HALF_1_BITS;
let numerator = (($r as $ty) << QUARTER_BITS) | (lo >> QUARTER_BITS);
let denominator = ($s as $ty) << 1;
let q = numerator / denominator;
let u = numerator % denominator;
let mut s = ($s << QUARTER_BITS) as $ty + q;
let (mut r, overflow) =
((u << QUARTER_BITS) | (lo & LOWEST_QUARTER_1_BITS)).overflowing_sub(q * q);
if overflow {
r = r.wrapping_add(2 * s - 1);
s -= 1;
}
// Inform the optimizer that `s` is nonzero. This will allow it to
// avoid generating code to handle division-by-zero panics in the next
// stage.
//
// SAFETY: If the original `$n` is zero, the top of the `unsigned_fn`
// macro recurses instead of continuing to this point, so the original
// `$n` wasn't a 0 if we've reached here.
//
// Then the `unsigned_fn` macro normalizes `$n` so that at least one of
// its two most-significant bits is a 1.
//
// Then these stages take as many of the most-significant bits of `$n`
// as will fit in this stage's type. For example, the stage that
// handles `u32` deals with the 32 most-significant bits of `$n`. This
// means that each stage has at least one 1 bit in `n`'s two
// most-significant bits, making `n` nonzero.
//
// Then this stage will produce the correct integer square root for
// that `n` value. Since `n` is nonzero, `s` will also be nonzero.
unsafe { crate::hint::assert_unchecked(s != 0) };
(s, r)
}};
}
/// Generates the last stage of the computation before denormalization.
///
/// # Safety
///
/// `$s` must be nonzero.
macro_rules! last_stage {
($ty:ty, $n:ident, $s:ident, $r:ident) => {{
debug_assert!($s != 0, "`$s` is zero in `last_stage!`.");
const HALF_BITS: u32 = <$ty>::BITS >> 1;
const QUARTER_BITS: u32 = <$ty>::BITS >> 2;
const LOWER_HALF_1_BITS: $ty = (1 << HALF_BITS) - 1;
let lo = $n & LOWER_HALF_1_BITS;
let numerator = (($r as $ty) << QUARTER_BITS) | (lo >> QUARTER_BITS);
let denominator = ($s as $ty) << 1;
let q = numerator / denominator;
let mut s = ($s << QUARTER_BITS) as $ty + q;
let (s_squared, overflow) = s.overflowing_mul(s);
if overflow || s_squared > $n {
s -= 1;
}
s
}};
}
/// Takes the normalized [`u16`](prim@u16) input and gets its normalized
/// [integer square root](https://en.wikipedia.org/wiki/Integer_square_root).
///
/// # Safety
///
/// `n` must be nonzero.
#[inline]
const fn u16_stages(n: u16) -> u16 {
let (s, r) = first_stage!(16, n);
last_stage!(u16, n, s, r)
}
/// Takes the normalized [`u32`](prim@u32) input and gets its normalized
/// [integer square root](https://en.wikipedia.org/wiki/Integer_square_root).
///
/// # Safety
///
/// `n` must be nonzero.
#[inline]
const fn u32_stages(n: u32) -> u32 {
let (s, r) = first_stage!(32, n);
let (s, r) = middle_stage!(32, u16, n, s, r);
last_stage!(u32, n, s, r)
}
/// Takes the normalized [`u64`](prim@u64) input and gets its normalized
/// [integer square root](https://en.wikipedia.org/wiki/Integer_square_root).
///
/// # Safety
///
/// `n` must be nonzero.
#[inline]
const fn u64_stages(n: u64) -> u64 {
let (s, r) = first_stage!(64, n);
let (s, r) = middle_stage!(64, u16, n, s, r);
let (s, r) = middle_stage!(64, u32, n, s, r);
last_stage!(u64, n, s, r)
}
/// Takes the normalized [`u128`](prim@u128) input and gets its normalized
/// [integer square root](https://en.wikipedia.org/wiki/Integer_square_root).
///
/// # Safety
///
/// `n` must be nonzero.
#[inline]
const fn u128_stages(n: u128) -> u128 {
let (s, r) = first_stage!(128, n);
let (s, r) = middle_stage!(128, u16, n, s, r);
let (s, r) = middle_stage!(128, u32, n, s, r);
let (s, r) = middle_stage!(128, u64, n, s, r);
last_stage!(u128, n, s, r)
}
unsigned_fn!(u16, u8, u16_stages);
unsigned_fn!(u32, u16, u32_stages);
unsigned_fn!(u64, u32, u64_stages);
unsigned_fn!(u128, u64, u128_stages);
/// Instantiate this panic logic once, rather than for all the isqrt methods
/// on every single primitive type.
#[cold]
#[track_caller]
pub const fn panic_for_negative_argument() -> ! {
panic!("argument of integer square root cannot be negative")
}

View File

@ -41,6 +41,7 @@ macro_rules! unlikely {
mod error;
mod int_log10;
mod int_sqrt;
mod nonzero;
mod overflow_panic;
mod saturating;

View File

@ -7,7 +7,7 @@
use crate::ops::{BitOr, BitOrAssign, Div, DivAssign, Neg, Rem, RemAssign};
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::str::FromStr;
use crate::{fmt, hint, intrinsics, ptr, ub_checks};
use crate::{fmt, intrinsics, ptr, ub_checks};
/// A marker trait for primitive types which can be zero.
///
@ -1545,31 +1545,14 @@ pub const fn is_power_of_two(self) -> bool {
without modifying the original"]
#[inline]
pub const fn isqrt(self) -> Self {
// The algorithm is based on the one presented in
// <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)>
// which cites as source the following C code:
// <https://web.archive.org/web/20120306040058/http://medialab.freaknet.org/martin/src/sqrt/sqrt.c>.
let result = self.get().isqrt();
let mut op = self.get();
let mut res = 0;
let mut one = 1 << (self.ilog2() & !1);
while one != 0 {
if op >= res + one {
op -= res + one;
res = (res >> 1) + one;
} else {
res >>= 1;
}
one >>= 2;
}
// SAFETY: The result fits in an integer with half as many bits.
// Inform the optimizer about it.
unsafe { hint::assert_unchecked(res < 1 << (Self::BITS / 2)) };
// SAFETY: The square root of an integer >= 1 is always >= 1.
unsafe { Self::new_unchecked(res) }
// SAFETY: Integer square root is a monotonically nondecreasing
// function, which means that increasing the input will never cause
// the output to decrease. Thus, since the input for nonzero
// unsigned integers has a lower bound of 1, the lower bound of the
// results will be sqrt(1), which is 1, so a result can't be zero.
unsafe { Self::new_unchecked(result) }
}
};

View File

@ -2762,10 +2762,24 @@ pub const fn pow(self, mut exp: u32) -> Self {
without modifying the original"]
#[inline]
pub const fn isqrt(self) -> Self {
match NonZero::new(self) {
Some(x) => x.isqrt().get(),
None => 0,
let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;
// Inform the optimizer what the range of outputs is. If testing
// `core` crashes with no panic message and a `num::int_sqrt::u*`
// test failed, it's because your edits caused these assertions or
// the assertions in `fn isqrt` of `nonzero.rs` to become false.
//
// SAFETY: Integer square root is a monotonically nondecreasing
// function, which means that increasing the input will never
// cause the output to decrease. Thus, since the input for unsigned
// integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
// bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
unsafe {
const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
crate::hint::assert_unchecked(result <= MAX_RESULT);
}
result
}
/// Performs Euclidean division.