Refactor BitSet relational methods into trait with parameterized

right-hand side
This commit is contained in:
Will Crichton 2021-08-24 17:50:08 -07:00
parent 0ca51b6b66
commit 79e0a0faf9
3 changed files with 238 additions and 129 deletions

View File

@ -16,6 +16,43 @@
pub const WORD_BYTES: usize = mem::size_of::<Word>(); pub const WORD_BYTES: usize = mem::size_of::<Word>();
pub const WORD_BITS: usize = WORD_BYTES * 8; pub const WORD_BITS: usize = WORD_BYTES * 8;
pub trait BitRelations<Rhs> {
fn union(&mut self, other: &Rhs) -> bool;
fn subtract(&mut self, other: &Rhs) -> bool;
fn intersect(&mut self, other: &Rhs) -> bool;
}
macro_rules! bit_relations_inherent_impls {
() => {
/// Sets `self = self | other` and returns `true` if `self` changed
/// (i.e., if new bits were added).
pub fn union<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::union(self, other)
}
/// Sets `self = self - other` and returns `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::subtract(self, other)
}
/// Sets `self = self & other` and return `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::intersect(self, other)
}
};
}
/// A fixed-size bitset type with a dense representation. /// A fixed-size bitset type with a dense representation.
/// ///
/// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation. /// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
@ -134,25 +171,6 @@ pub fn remove(&mut self, elem: T) -> bool {
new_word != word new_word != word
} }
/// Sets `self = self | other` and returns `true` if `self` changed
/// (i.e., if new bits were added).
pub fn union(&mut self, other: &impl UnionIntoBitSet<T>) -> bool {
other.union_into(self)
}
/// Sets `self = self - other` and returns `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn subtract(&mut self, other: &impl SubtractFromBitSet<T>) -> bool {
other.subtract_from(self)
}
/// Sets `self = self & other` and return `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn intersect(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & b)
}
/// Gets a slice of the underlying words. /// Gets a slice of the underlying words.
pub fn words(&self) -> &[Word] { pub fn words(&self) -> &[Word] {
&self.words &self.words
@ -208,33 +226,167 @@ fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
not_already not_already
} }
bit_relations_inherent_impls! {}
} }
/// This is implemented by all the bitsets so that BitSet::union() can be impl<T: Idx> BitRelations<BitSet<T>> for BitSet<T> {
/// passed any type of bitset. fn union(&mut self, other: &BitSet<T>) -> bool {
pub trait UnionIntoBitSet<T: Idx> {
// Performs `other = other | self`.
fn union_into(&self, other: &mut BitSet<T>) -> bool;
}
/// This is implemented by all the bitsets so that BitSet::subtract() can be
/// passed any type of bitset.
pub trait SubtractFromBitSet<T: Idx> {
// Performs `other = other - self`.
fn subtract_from(&self, other: &mut BitSet<T>) -> bool;
}
impl<T: Idx> UnionIntoBitSet<T> for BitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size); assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut other.words, &self.words, |a, b| a | b) bitwise(&mut self.words, &other.words, |a, b| a | b)
}
fn subtract(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & !b)
}
fn intersect(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & b)
} }
} }
impl<T: Idx> SubtractFromBitSet<T> for BitSet<T> { fn sequential_update<T: Idx>(mut f: impl FnMut(T) -> bool, it: impl Iterator<Item = T>) -> bool {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool { let mut changed = false;
assert_eq!(self.domain_size, other.domain_size); for elem in it {
bitwise(&mut other.words, &self.words, |a, b| a & !b) changed |= f(elem);
}
changed
}
fn sparse_intersect<T: Idx>(
set: &mut SparseBitSet<T>,
other_contains: impl Fn(&T) -> bool,
) -> bool {
let mut changed = false;
for i in (0..set.len()).rev() {
if !other_contains(&set.elems[i]) {
set.elems.remove(i);
changed = true;
}
}
changed
}
impl<T: Idx> BitRelations<SparseBitSet<T>> for BitSet<T> {
fn union(&mut self, other: &SparseBitSet<T>) -> bool {
sequential_update(|elem| self.insert(elem), other.iter().cloned())
}
fn subtract(&mut self, other: &SparseBitSet<T>) -> bool {
sequential_update(|elem| self.remove(elem), other.iter().cloned())
}
fn intersect(&mut self, other: &SparseBitSet<T>) -> bool {
self.intersect(&other.to_dense())
}
}
impl<T: Idx> BitRelations<BitSet<T>> for SparseBitSet<T> {
fn union(&mut self, other: &BitSet<T>) -> bool {
sequential_update(|elem| self.insert(elem), other.iter())
}
fn subtract(&mut self, other: &BitSet<T>) -> bool {
sequential_update(|elem| self.remove(elem), other.iter())
}
fn intersect(&mut self, other: &BitSet<T>) -> bool {
sparse_intersect(self, |el| other.contains(*el))
}
}
impl<T: Idx> BitRelations<SparseBitSet<T>> for SparseBitSet<T> {
fn union(&mut self, other: &SparseBitSet<T>) -> bool {
sequential_update(|elem| self.insert(elem), other.iter().cloned())
}
fn subtract(&mut self, other: &SparseBitSet<T>) -> bool {
sequential_update(|elem| self.insert(elem), other.iter().cloned())
}
fn intersect(&mut self, other: &SparseBitSet<T>) -> bool {
sparse_intersect(self, |el| other.contains(*el))
}
}
impl<T: Idx, S> BitRelations<HybridBitSet<T>> for S
where
S: BitRelations<BitSet<T>> + BitRelations<SparseBitSet<T>>,
{
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
match other {
HybridBitSet::Sparse(sparse) => self.union(sparse),
HybridBitSet::Dense(dense) => self.union(dense),
}
}
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
match other {
HybridBitSet::Sparse(sparse) => self.subtract(sparse),
HybridBitSet::Dense(dense) => self.subtract(dense),
}
}
fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
match other {
HybridBitSet::Sparse(sparse) => self.intersect(sparse),
HybridBitSet::Dense(dense) => self.intersect(dense),
}
}
}
impl<T: Idx> BitRelations<HybridBitSet<T>> for HybridBitSet<T> {
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(self_sparse) => {
match other {
HybridBitSet::Sparse(other_sparse) => self_sparse.union(other_sparse),
HybridBitSet::Dense(other_dense) => {
// `self` is sparse and `other` is dense. To
// merge them, we have two available strategies:
// * Densify `self` then merge other
// * Clone other then integrate bits from `self`
// The second strategy requires dedicated method
// since the usual `union` returns the wrong
// result. In the dedicated case the computation
// is slightly faster if the bits of the sparse
// bitset map to only few words of the dense
// representation, i.e. indices are near each
// other.
//
// Benchmarking seems to suggest that the second
// option is worth it.
let mut new_dense = other_dense.clone();
let changed = new_dense.reverse_union_sparse(self_sparse);
*self = HybridBitSet::Dense(new_dense);
changed
}
}
}
HybridBitSet::Dense(self_dense) => self_dense.union(other),
}
}
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
// FIXME(willcrichton): should there be an optimized sparse / dense version?
match self {
HybridBitSet::Sparse(self_sparse) => self_sparse.subtract(other),
HybridBitSet::Dense(self_dense) => self_dense.subtract(other),
}
}
fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
// FIXME(willcrichton): should there be an optimized sparse / dense version?
match self {
HybridBitSet::Sparse(self_sparse) => self_sparse.intersect(other),
HybridBitSet::Dense(self_dense) => {
<BitSet<T> as BitRelations<HybridBitSet<T>>>::intersect(self_dense, other)
}
}
} }
} }
@ -441,28 +593,8 @@ fn to_dense(&self) -> BitSet<T> {
fn iter(&self) -> slice::Iter<'_, T> { fn iter(&self) -> slice::Iter<'_, T> {
self.elems.iter() self.elems.iter()
} }
}
impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> { bit_relations_inherent_impls! {}
fn union_into(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
let mut changed = false;
for elem in self.iter() {
changed |= other.insert(*elem);
}
changed
}
}
impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
let mut changed = false;
for elem in self.iter() {
changed |= other.remove(*elem);
}
changed
}
} }
/// A fixed-size bitset type with a hybrid representation: sparse when there /// A fixed-size bitset type with a hybrid representation: sparse when there
@ -579,48 +711,6 @@ pub fn remove(&mut self, elem: T) -> bool {
} }
} }
pub fn union(&mut self, other: &HybridBitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(self_sparse) => {
match other {
HybridBitSet::Sparse(other_sparse) => {
// Both sets are sparse. Add the elements in
// `other_sparse` to `self` one at a time. This
// may or may not cause `self` to be densified.
assert_eq!(self.domain_size(), other.domain_size());
let mut changed = false;
for elem in other_sparse.iter() {
changed |= self.insert(*elem);
}
changed
}
HybridBitSet::Dense(other_dense) => {
// `self` is sparse and `other` is dense. To
// merge them, we have two available strategies:
// * Densify `self` then merge other
// * Clone other then integrate bits from `self`
// The second strategy requires dedicated method
// since the usual `union` returns the wrong
// result. In the dedicated case the computation
// is slightly faster if the bits of the sparse
// bitset map to only few words of the dense
// representation, i.e. indices are near each
// other.
//
// Benchmarking seems to suggest that the second
// option is worth it.
let mut new_dense = other_dense.clone();
let changed = new_dense.reverse_union_sparse(self_sparse);
*self = HybridBitSet::Dense(new_dense);
changed
}
}
}
HybridBitSet::Dense(self_dense) => self_dense.union(other),
}
}
/// Converts to a dense set, consuming itself in the process. /// Converts to a dense set, consuming itself in the process.
pub fn to_dense(self) -> BitSet<T> { pub fn to_dense(self) -> BitSet<T> {
match self { match self {
@ -635,24 +725,8 @@ pub fn iter(&self) -> HybridIter<'_, T> {
HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()), HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
} }
} }
}
impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> { bit_relations_inherent_impls! {}
fn union_into(&self, other: &mut BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.union_into(other),
HybridBitSet::Dense(dense) => dense.union_into(other),
}
}
}
impl<T: Idx> SubtractFromBitSet<T> for HybridBitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.subtract_from(other),
HybridBitSet::Dense(dense) => dense.subtract_from(other),
}
}
} }
pub enum HybridIter<'a, T: Idx> { pub enum HybridIter<'a, T: Idx> {
@ -974,6 +1048,19 @@ pub fn insert(&mut self, row: R, column: C) -> bool {
self.ensure_row(row).insert(column) self.ensure_row(row).insert(column)
} }
pub fn remove(&mut self, row: R, column: C) -> bool {
match self.rows.get_mut(row) {
Some(Some(row)) => row.remove(column),
_ => false,
}
}
pub fn clear(&mut self, row: R) {
if let Some(Some(row)) = self.rows.get_mut(row) {
row.clear();
}
}
/// Do the bits from `row` contain `column`? Put another way, is /// Do the bits from `row` contain `column`? Put another way, is
/// the matrix cell at `(row, column)` true? Put yet another way, /// the matrix cell at `(row, column)` true? Put yet another way,
/// if the matrix represents (transitive) reachability, can /// if the matrix represents (transitive) reachability, can
@ -1002,11 +1089,6 @@ pub fn union_rows(&mut self, read: R, write: R) -> bool {
} }
} }
/// Union a row, `from`, into the `into` row.
pub fn union_into_row(&mut self, into: R, from: &HybridBitSet<C>) -> bool {
self.ensure_row(into).union(from)
}
/// Insert all bits in the given row. /// Insert all bits in the given row.
pub fn insert_all_into_row(&mut self, row: R) { pub fn insert_all_into_row(&mut self, row: R) {
self.ensure_row(row).insert_all(); self.ensure_row(row).insert_all();
@ -1025,6 +1107,33 @@ pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> { pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None } if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
} }
pub fn intersect_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
match self.rows.get_mut(row) {
Some(Some(row)) => row.intersect(set),
_ => false,
}
}
pub fn subtract_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
match self.rows.get_mut(row) {
Some(Some(row)) => row.subtract(set),
_ => false,
}
}
pub fn union_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
self.ensure_row(row).union(set)
}
} }
#[inline] #[inline]

View File

@ -160,7 +160,7 @@ impl<N: Idx> LivenessValues<N> {
/// region. Returns whether any of them are newly added. /// region. Returns whether any of them are newly added.
crate fn add_elements(&mut self, row: N, locations: &HybridBitSet<PointIndex>) -> bool { crate fn add_elements(&mut self, row: N, locations: &HybridBitSet<PointIndex>) -> bool {
debug!("LivenessValues::add_elements(row={:?}, locations={:?})", row, locations); debug!("LivenessValues::add_elements(row={:?}, locations={:?})", row, locations);
self.points.union_into_row(row, locations) self.points.union_row(row, locations)
} }
/// Adds all the control-flow points to the values for `r`. /// Adds all the control-flow points to the values for `r`.
@ -294,7 +294,7 @@ impl<N: Idx> RegionValues<N> {
/// the region `to` in `self`. /// the region `to` in `self`.
crate fn merge_liveness<M: Idx>(&mut self, to: N, from: M, values: &LivenessValues<M>) { crate fn merge_liveness<M: Idx>(&mut self, to: N, from: M, values: &LivenessValues<M>) {
if let Some(set) = values.points.row(from) { if let Some(set) = values.points.row(from) {
self.points.union_into_row(to, set); self.points.union_row(to, set);
} }
} }

View File

@ -626,7 +626,7 @@ fn compute_storage_conflicts(
// Locals that are always live or ones that need to be stored across // Locals that are always live or ones that need to be stored across
// suspension points are not eligible for overlap. // suspension points are not eligible for overlap.
let mut ineligible_locals = always_live_locals.into_inner(); let mut ineligible_locals = always_live_locals.into_inner();
ineligible_locals.intersect(saved_locals); ineligible_locals.intersect(&**saved_locals);
// Compute the storage conflicts for all eligible locals. // Compute the storage conflicts for all eligible locals.
let mut visitor = StorageConflictVisitor { let mut visitor = StorageConflictVisitor {
@ -701,7 +701,7 @@ fn apply_state(&mut self, flow_state: &BitSet<Local>, loc: Location) {
} }
let mut eligible_storage_live = flow_state.clone(); let mut eligible_storage_live = flow_state.clone();
eligible_storage_live.intersect(&self.saved_locals); eligible_storage_live.intersect(&**self.saved_locals);
for local in eligible_storage_live.iter() { for local in eligible_storage_live.iter() {
self.local_conflicts.union_row_with(&eligible_storage_live, local); self.local_conflicts.union_row_with(&eligible_storage_live, local);