Merge pull request #1684 from rtanglao/master
rustdocs for f32.rs and f64.rs
This commit is contained in:
commit
7820c2f17a
@ -1,8 +1,4 @@
|
||||
/*
|
||||
Module: f32
|
||||
|
||||
Floating point operations and constants for `f32`
|
||||
*/
|
||||
#[doc = "Floating point operations and constants for `f32`"];
|
||||
|
||||
// PORT
|
||||
|
||||
@ -29,113 +25,87 @@
|
||||
// These are not defined inside consts:: for consistency with
|
||||
// the integer types
|
||||
|
||||
/* Const: NaN */
|
||||
const NaN: f32 = 0.0_f32/0.0_f32;
|
||||
|
||||
/* Const: infinity */
|
||||
const infinity: f32 = 1.0_f32/0.0_f32;
|
||||
|
||||
/* Const: neg_infinity */
|
||||
const neg_infinity: f32 = -1.0_f32/0.0_f32;
|
||||
|
||||
/* Predicate: isNaN */
|
||||
pure fn is_NaN(f: f32) -> bool { f != f }
|
||||
|
||||
/* Function: add */
|
||||
pure fn add(x: f32, y: f32) -> f32 { ret x + y; }
|
||||
|
||||
/* Function: sub */
|
||||
pure fn sub(x: f32, y: f32) -> f32 { ret x - y; }
|
||||
|
||||
/* Function: mul */
|
||||
pure fn mul(x: f32, y: f32) -> f32 { ret x * y; }
|
||||
|
||||
/* Function: div */
|
||||
pure fn div(x: f32, y: f32) -> f32 { ret x / y; }
|
||||
|
||||
/* Function: rem */
|
||||
pure fn rem(x: f32, y: f32) -> f32 { ret x % y; }
|
||||
|
||||
/* Predicate: lt */
|
||||
pure fn lt(x: f32, y: f32) -> bool { ret x < y; }
|
||||
|
||||
/* Predicate: le */
|
||||
pure fn le(x: f32, y: f32) -> bool { ret x <= y; }
|
||||
|
||||
/* Predicate: eq */
|
||||
pure fn eq(x: f32, y: f32) -> bool { ret x == y; }
|
||||
|
||||
/* Predicate: ne */
|
||||
pure fn ne(x: f32, y: f32) -> bool { ret x != y; }
|
||||
|
||||
/* Predicate: ge */
|
||||
pure fn ge(x: f32, y: f32) -> bool { ret x >= y; }
|
||||
|
||||
/* Predicate: gt */
|
||||
pure fn gt(x: f32, y: f32) -> bool { ret x > y; }
|
||||
|
||||
// FIXME replace the predicates below with llvm intrinsics or calls
|
||||
// to the libmath macros in the rust runtime for performance
|
||||
|
||||
/*
|
||||
Predicate: is_positive
|
||||
|
||||
Returns true if `x` is a positive number, including +0.0f320 and +Infinity.
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a positive number, including +0.0f320 and +Infinity."
|
||||
)]
|
||||
pure fn is_positive(x: f32) -> bool
|
||||
{ ret x > 0.0f32 || (1.0f32/x) == infinity; }
|
||||
|
||||
/*
|
||||
Predicate: is_negative
|
||||
|
||||
Returns true if `x` is a negative number, including -0.0f320 and -Infinity.
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a negative number, including -0.0f320 and -Infinity."
|
||||
)]
|
||||
pure fn is_negative(x: f32) -> bool
|
||||
{ ret x < 0.0f32 || (1.0f32/x) == neg_infinity; }
|
||||
|
||||
/*
|
||||
Predicate: is_nonpositive
|
||||
|
||||
Returns true if `x` is a negative number, including -0.0f320 and -Infinity.
|
||||
(This is the same as `f32::negative`.)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a negative number, including \
|
||||
-0.0f320 and -Infinity. (This is the same as \
|
||||
`f32::negative`.)"
|
||||
)]
|
||||
pure fn is_nonpositive(x: f32) -> bool {
|
||||
ret x < 0.0f32 || (1.0f32/x) == neg_infinity;
|
||||
}
|
||||
|
||||
/*
|
||||
Predicate: nonnegative
|
||||
|
||||
Returns true if `x` is a positive number, including +0.0f320 and +Infinity.
|
||||
(This is the same as `f32::positive`.)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a positive number, \
|
||||
including +0.0f320 and +Infinity. (This is \
|
||||
the same as `f32::positive`.)"
|
||||
)]
|
||||
pure fn is_nonnegative(x: f32) -> bool {
|
||||
ret x > 0.0f32 || (1.0f32/x) == infinity;
|
||||
}
|
||||
|
||||
/*
|
||||
Predicate: is_zero
|
||||
|
||||
Returns true if `x` is a zero number (positive or negative zero)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a zero number \
|
||||
(positive or negative zero)"
|
||||
)]
|
||||
pure fn is_zero(x: f32) -> bool {
|
||||
ret x == 0.0f32 || x == -0.0f32;
|
||||
}
|
||||
|
||||
/*
|
||||
Predicate: is_infinite
|
||||
|
||||
Returns true if `x`is an infinite numer
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x`is an infinite number"
|
||||
)]
|
||||
pure fn is_infinite(x: f32) -> bool {
|
||||
ret x == infinity || x == neg_infinity;
|
||||
}
|
||||
|
||||
/*
|
||||
Predicate: is_finite
|
||||
|
||||
Returns true if `x`is a finite numer
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x`is a finite number"
|
||||
)]
|
||||
pure fn is_finite(x: f32) -> bool {
|
||||
ret !(is_NaN(x) || is_infinite(x));
|
||||
}
|
||||
@ -146,96 +116,69 @@
|
||||
mod consts {
|
||||
|
||||
// FIXME replace with mathematical constants from cmath
|
||||
|
||||
/*
|
||||
Const: pi
|
||||
|
||||
Archimedes' constant
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Archimedes' constant"
|
||||
)]
|
||||
const pi: f32 = 3.14159265358979323846264338327950288_f32;
|
||||
|
||||
/*
|
||||
Const: frac_pi_2
|
||||
|
||||
pi/2.0
|
||||
*/
|
||||
#[doc(
|
||||
brief = "pi/2.0"
|
||||
)]
|
||||
const frac_pi_2: f32 = 1.57079632679489661923132169163975144_f32;
|
||||
|
||||
/*
|
||||
Const: frac_pi_4
|
||||
|
||||
pi/4.0
|
||||
*/
|
||||
#[doc(
|
||||
brief = "pi/4.0"
|
||||
)]
|
||||
const frac_pi_4: f32 = 0.785398163397448309615660845819875721_f32;
|
||||
|
||||
/*
|
||||
Const: frac_1_pi
|
||||
|
||||
1.0/pi
|
||||
*/
|
||||
#[doc(
|
||||
brief = "1.0/pi"
|
||||
)]
|
||||
const frac_1_pi: f32 = 0.318309886183790671537767526745028724_f32;
|
||||
|
||||
/*
|
||||
Const: frac_2_pi
|
||||
|
||||
2.0/pi
|
||||
*/
|
||||
#[doc(
|
||||
brief = "2.0/pi"
|
||||
)]
|
||||
const frac_2_pi: f32 = 0.636619772367581343075535053490057448_f32;
|
||||
|
||||
/*
|
||||
Const: frac_2_sqrtpi
|
||||
|
||||
2.0/sqrt(pi)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "2.0/sqrt(pi)"
|
||||
)]
|
||||
const frac_2_sqrtpi: f32 = 1.12837916709551257389615890312154517_f32;
|
||||
|
||||
/*
|
||||
Const: sqrt2
|
||||
|
||||
sqrt(2.0)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "sqrt(2.0)"
|
||||
)]
|
||||
const sqrt2: f32 = 1.41421356237309504880168872420969808_f32;
|
||||
|
||||
/*
|
||||
Const: frac_1_sqrt2
|
||||
|
||||
1.0/sqrt(2.0)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "1.0/sqrt(2.0)"
|
||||
)]
|
||||
const frac_1_sqrt2: f32 = 0.707106781186547524400844362104849039_f32;
|
||||
|
||||
/*
|
||||
Const: e
|
||||
|
||||
Euler's number
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Euler's number"
|
||||
)]
|
||||
const e: f32 = 2.71828182845904523536028747135266250_f32;
|
||||
|
||||
/*
|
||||
Const: log2_e
|
||||
|
||||
log2(e)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "log2(e)"
|
||||
)]
|
||||
const log2_e: f32 = 1.44269504088896340735992468100189214_f32;
|
||||
|
||||
/*
|
||||
Const: log10_e
|
||||
|
||||
log10(e)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "log10(e)"
|
||||
)]
|
||||
const log10_e: f32 = 0.434294481903251827651128918916605082_f32;
|
||||
|
||||
/*
|
||||
Const: ln_2
|
||||
|
||||
ln(2.0)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "ln(2.0)"
|
||||
)]
|
||||
const ln_2: f32 = 0.693147180559945309417232121458176568_f32;
|
||||
|
||||
/*
|
||||
Const: ln_10
|
||||
|
||||
ln(10.0)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "ln(10.0)"
|
||||
)]
|
||||
const ln_10: f32 = 2.30258509299404568401799145468436421_f32;
|
||||
}
|
||||
|
||||
|
@ -1,8 +1,4 @@
|
||||
/*
|
||||
Module: f64
|
||||
|
||||
Floating point operations and constants for `f64`
|
||||
*/
|
||||
#[doc = "Floating point operations and constants for `f64`"];
|
||||
|
||||
// PORT
|
||||
|
||||
@ -50,110 +46,86 @@
|
||||
const min_10_exp: int = -307;
|
||||
const max_10_exp: int = 308;
|
||||
|
||||
/* Const: NaN */
|
||||
const NaN: f64 = 0.0_f64/0.0_f64;
|
||||
|
||||
/* Const: infinity */
|
||||
const infinity: f64 = 1.0_f64/0.0_f64;
|
||||
|
||||
/* Const: neg_infinity */
|
||||
const neg_infinity: f64 = -1.0_f64/0.0_f64;
|
||||
|
||||
/* Predicate: isNaN */
|
||||
pure fn is_NaN(f: f64) -> bool { f != f }
|
||||
|
||||
/* Function: add */
|
||||
pure fn add(x: f64, y: f64) -> f64 { ret x + y; }
|
||||
|
||||
/* Function: sub */
|
||||
pure fn sub(x: f64, y: f64) -> f64 { ret x - y; }
|
||||
|
||||
/* Function: mul */
|
||||
pure fn mul(x: f64, y: f64) -> f64 { ret x * y; }
|
||||
|
||||
/* Function: div */
|
||||
pure fn div(x: f64, y: f64) -> f64 { ret x / y; }
|
||||
|
||||
/* Function: rem */
|
||||
pure fn rem(x: f64, y: f64) -> f64 { ret x % y; }
|
||||
|
||||
/* Predicate: lt */
|
||||
pure fn lt(x: f64, y: f64) -> bool { ret x < y; }
|
||||
|
||||
/* Predicate: le */
|
||||
pure fn le(x: f64, y: f64) -> bool { ret x <= y; }
|
||||
|
||||
/* Predicate: eq */
|
||||
pure fn eq(x: f64, y: f64) -> bool { ret x == y; }
|
||||
|
||||
/* Predicate: ne */
|
||||
pure fn ne(x: f64, y: f64) -> bool { ret x != y; }
|
||||
|
||||
/* Predicate: ge */
|
||||
pure fn ge(x: f64, y: f64) -> bool { ret x >= y; }
|
||||
|
||||
/* Predicate: gt */
|
||||
pure fn gt(x: f64, y: f64) -> bool { ret x > y; }
|
||||
|
||||
/*
|
||||
Predicate: is_positive
|
||||
|
||||
Returns true if `x` is a positive number, including +0.0f640 and +Infinity.
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a positive number, including \
|
||||
+0.0f640 and +Infinity."
|
||||
)]
|
||||
pure fn is_positive(x: f64) -> bool
|
||||
{ ret x > 0.0f64 || (1.0f64/x) == infinity; }
|
||||
|
||||
/*
|
||||
Predicate: is_negative
|
||||
|
||||
Returns true if `x` is a negative number, including -0.0f640 and -Infinity.
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a negative number, including \
|
||||
-0.0f640 and -Infinity."
|
||||
)]
|
||||
pure fn is_negative(x: f64) -> bool
|
||||
{ ret x < 0.0f64 || (1.0f64/x) == neg_infinity; }
|
||||
|
||||
/*
|
||||
Predicate: is_nonpositive
|
||||
|
||||
Returns true if `x` is a negative number, including -0.0f640 and -Infinity.
|
||||
(This is the same as `f64::negative`.)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a negative number, including \
|
||||
-0.0f640 and -Infinity. (This is the same as \
|
||||
`f64::negative`.)"
|
||||
)]
|
||||
pure fn is_nonpositive(x: f64) -> bool {
|
||||
ret x < 0.0f64 || (1.0f64/x) == neg_infinity;
|
||||
}
|
||||
|
||||
/*
|
||||
Predicate: is_nonnegative
|
||||
|
||||
Returns true if `x` is a positive number, including +0.0f640 and +Infinity.
|
||||
(This is the same as `f64::positive`.)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a positive number, including \
|
||||
+0.0f640 and +Infinity.(This is the same as \
|
||||
`f64::positive`.)"
|
||||
)]
|
||||
pure fn is_nonnegative(x: f64) -> bool {
|
||||
ret x > 0.0f64 || (1.0f64/x) == infinity;
|
||||
}
|
||||
|
||||
/*
|
||||
Predicate: is_zero
|
||||
|
||||
Returns true if `x` is a zero number (positive or negative zero)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x` is a zero number (positive or \
|
||||
negative zero)"
|
||||
)]
|
||||
pure fn is_zero(x: f64) -> bool {
|
||||
ret x == 0.0f64 || x == -0.0f64;
|
||||
}
|
||||
|
||||
/*
|
||||
Predicate: is_infinite
|
||||
|
||||
Returns true if `x`is an infinite numer
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x`is an infinite number."
|
||||
)]
|
||||
pure fn is_infinite(x: f64) -> bool {
|
||||
ret x == infinity || x == neg_infinity;
|
||||
}
|
||||
|
||||
/*
|
||||
Predicate: is_finite
|
||||
|
||||
Returns true if `x`is a finite numer
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Returns true if `x`is a finite number."
|
||||
)]
|
||||
pure fn is_finite(x: f64) -> bool {
|
||||
ret !(is_NaN(x) || is_infinite(x));
|
||||
}
|
||||
@ -165,95 +137,69 @@ mod consts {
|
||||
|
||||
// FIXME replace with mathematical constants from cmath
|
||||
|
||||
/*
|
||||
Const: pi
|
||||
|
||||
Archimedes' constant
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Archimedes' constant"
|
||||
)]
|
||||
const pi: f64 = 3.14159265358979323846264338327950288_f64;
|
||||
|
||||
/*
|
||||
Const: frac_pi_2
|
||||
|
||||
pi/2.0
|
||||
*/
|
||||
#[doc(
|
||||
brief = "pi/2.0"
|
||||
)]
|
||||
const frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64;
|
||||
|
||||
/*
|
||||
Const: frac_pi_4
|
||||
|
||||
pi/4.0
|
||||
*/
|
||||
#[doc(
|
||||
brief = "pi/4.0"
|
||||
)]
|
||||
const frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64;
|
||||
|
||||
/*
|
||||
Const: frac_1_pi
|
||||
|
||||
1.0/pi
|
||||
*/
|
||||
#[doc(
|
||||
brief = "1.0/pi"
|
||||
)]
|
||||
const frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64;
|
||||
|
||||
/*
|
||||
Const: frac_2_pi
|
||||
|
||||
2.0/pi
|
||||
*/
|
||||
#[doc(
|
||||
brief = "2.0/pi"
|
||||
)]
|
||||
const frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64;
|
||||
|
||||
/*
|
||||
Const: frac_2_sqrtpi
|
||||
|
||||
2.0/sqrt(pi)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "2.0/sqrt(pi)"
|
||||
)]
|
||||
const frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64;
|
||||
|
||||
/*
|
||||
Const: sqrt2
|
||||
|
||||
sqrt(2.0)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "sqrt(2.0)"
|
||||
)]
|
||||
const sqrt2: f64 = 1.41421356237309504880168872420969808_f64;
|
||||
|
||||
/*
|
||||
Const: frac_1_sqrt2
|
||||
|
||||
1.0/sqrt(2.0)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "1.0/sqrt(2.0)"
|
||||
)]
|
||||
const frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64;
|
||||
|
||||
/*
|
||||
Const: e
|
||||
|
||||
Euler's number
|
||||
*/
|
||||
#[doc(
|
||||
brief = "Euler's number"
|
||||
)]
|
||||
const e: f64 = 2.71828182845904523536028747135266250_f64;
|
||||
|
||||
/*
|
||||
Const: log2_e
|
||||
|
||||
log2(e)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "log2(e)"
|
||||
)]
|
||||
const log2_e: f64 = 1.44269504088896340735992468100189214_f64;
|
||||
|
||||
/*
|
||||
Const: log10_e
|
||||
|
||||
log10(e)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "log10(e)"
|
||||
)]
|
||||
const log10_e: f64 = 0.434294481903251827651128918916605082_f64;
|
||||
|
||||
/*
|
||||
Const: ln_2
|
||||
|
||||
ln(2.0)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "ln(2.0)"
|
||||
)]
|
||||
const ln_2: f64 = 0.693147180559945309417232121458176568_f64;
|
||||
|
||||
/*
|
||||
Const: ln_10
|
||||
|
||||
ln(10.0)
|
||||
*/
|
||||
#[doc(
|
||||
brief = "ln(10.0)"
|
||||
)]
|
||||
const ln_10: f64 = 2.30258509299404568401799145468436421_f64;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user