Mark internal functions and traits unsafe

This commit is contained in:
LegionMammal978 2023-05-15 14:31:00 -04:00
parent 63b2ee0faf
commit 77481099ca
5 changed files with 57 additions and 32 deletions

View File

@ -178,7 +178,8 @@ where
)
};
let len = SpecInPlaceCollect::collect_in_place(&mut iterator, dst_buf, dst_end);
// SAFETY: `dst_buf` and `dst_end` are the start and end of the buffer.
let len = unsafe { SpecInPlaceCollect::collect_in_place(&mut iterator, dst_buf, dst_end) };
let src = unsafe { iterator.as_inner().as_into_iter() };
// check if SourceIter contract was upheld
@ -239,7 +240,7 @@ trait SpecInPlaceCollect<T, I>: Iterator<Item = T> {
/// `Iterator::__iterator_get_unchecked` calls with a `TrustedRandomAccessNoCoerce` bound
/// on `I` which means the caller of this method must take the safety conditions
/// of that trait into consideration.
fn collect_in_place(&mut self, dst: *mut T, end: *const T) -> usize;
unsafe fn collect_in_place(&mut self, dst: *mut T, end: *const T) -> usize;
}
impl<T, I> SpecInPlaceCollect<T, I> for I
@ -247,7 +248,7 @@ where
I: Iterator<Item = T>,
{
#[inline]
default fn collect_in_place(&mut self, dst_buf: *mut T, end: *const T) -> usize {
default unsafe fn collect_in_place(&mut self, dst_buf: *mut T, end: *const T) -> usize {
// use try-fold since
// - it vectorizes better for some iterator adapters
// - unlike most internal iteration methods, it only takes a &mut self
@ -265,7 +266,7 @@ where
I: Iterator<Item = T> + TrustedRandomAccessNoCoerce,
{
#[inline]
fn collect_in_place(&mut self, dst_buf: *mut T, end: *const T) -> usize {
unsafe fn collect_in_place(&mut self, dst_buf: *mut T, end: *const T) -> usize {
let len = self.size();
let mut drop_guard = InPlaceDrop { inner: dst_buf, dst: dst_buf };
for i in 0..len {

View File

@ -45,7 +45,8 @@ where
&mut buf,
&mut parts,
);
fmt.pad_formatted_parts(&formatted)
// SAFETY: `to_exact_fixed_str` and `format_exact` produce only ASCII characters.
unsafe { fmt.pad_formatted_parts(&formatted) }
}
// Don't inline this so callers that call both this and the above won't wind
@ -71,7 +72,8 @@ where
&mut buf,
&mut parts,
);
fmt.pad_formatted_parts(&formatted)
// SAFETY: `to_shortest_str` and `format_shortest` produce only ASCII characters.
unsafe { fmt.pad_formatted_parts(&formatted) }
}
fn float_to_decimal_display<T>(fmt: &mut Formatter<'_>, num: &T) -> Result
@ -116,7 +118,8 @@ where
&mut buf,
&mut parts,
);
fmt.pad_formatted_parts(&formatted)
// SAFETY: `to_exact_exp_str` and `format_exact` produce only ASCII characters.
unsafe { fmt.pad_formatted_parts(&formatted) }
}
// Don't inline this so callers that call both this and the above won't wind
@ -143,7 +146,8 @@ where
&mut buf,
&mut parts,
);
fmt.pad_formatted_parts(&formatted)
// SAFETY: `to_shortest_exp_str` and `format_shortest` produce only ASCII characters.
unsafe { fmt.pad_formatted_parts(&formatted) }
}
// Common code of floating point LowerExp and UpperExp.

View File

@ -1415,7 +1415,11 @@ impl<'a> Formatter<'a> {
/// Takes the formatted parts and applies the padding.
/// Assumes that the caller already has rendered the parts with required precision,
/// so that `self.precision` can be ignored.
fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
///
/// # Safety
///
/// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
unsafe fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
if let Some(mut width) = self.width {
// for the sign-aware zero padding, we render the sign first and
// behave as if we had no sign from the beginning.
@ -1438,10 +1442,14 @@ impl<'a> Formatter<'a> {
let len = formatted.len();
let ret = if width <= len {
// no padding
self.write_formatted_parts(&formatted)
// SAFETY: Per the precondition.
unsafe { self.write_formatted_parts(&formatted) }
} else {
let post_padding = self.padding(width - len, Alignment::Right)?;
self.write_formatted_parts(&formatted)?;
// SAFETY: Per the precondition.
unsafe {
self.write_formatted_parts(&formatted)?;
}
post_padding.write(self)
};
self.fill = old_fill;
@ -1449,20 +1457,20 @@ impl<'a> Formatter<'a> {
ret
} else {
// this is the common case and we take a shortcut
self.write_formatted_parts(formatted)
// SAFETY: Per the precondition.
unsafe { self.write_formatted_parts(formatted) }
}
}
fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
/// # Safety
///
/// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
unsafe fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
unsafe fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
// SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
// It's safe to use for `numfmt::Part::Num` since every char `c` is between
// `b'0'` and `b'9'`, which means `s` is valid UTF-8.
// It's also probably safe in practice to use for `numfmt::Part::Copy(buf)`
// since `buf` should be plain ASCII, but it's possible for someone to pass
// in a bad value for `buf` into `numfmt::to_shortest_str` since it is a
// public function.
// FIXME: Determine whether this could result in UB.
// `b'0'` and `b'9'`, which means `s` is valid UTF-8. It's safe to use for
// `numfmt::Part::Copy` due to this function's precondition.
buf.write_str(unsafe { str::from_utf8_unchecked(s) })
}
@ -1489,11 +1497,15 @@ impl<'a> Formatter<'a> {
*c = b'0' + (v % 10) as u8;
v /= 10;
}
write_bytes(self.buf, &s[..len])?;
// SAFETY: Per the precondition.
unsafe {
write_bytes(self.buf, &s[..len])?;
}
}
numfmt::Part::Copy(buf) => {
// SAFETY: Per the precondition.
numfmt::Part::Copy(buf) => unsafe {
write_bytes(self.buf, buf)?;
}
},
}
}
Ok(())

View File

@ -52,8 +52,12 @@ impl_int! { i8 i16 i32 i64 i128 isize }
impl_uint! { u8 u16 u32 u64 u128 usize }
/// A type that represents a specific radix
///
/// # Safety
///
/// `digit` must return an ASCII character.
#[doc(hidden)]
trait GenericRadix: Sized {
unsafe trait GenericRadix: Sized {
/// The number of digits.
const BASE: u8;
@ -129,7 +133,7 @@ struct UpperHex;
macro_rules! radix {
($T:ident, $base:expr, $prefix:expr, $($x:pat => $conv:expr),+) => {
impl GenericRadix for $T {
unsafe impl GenericRadix for $T {
const BASE: u8 = $base;
const PREFIX: &'static str = $prefix;
fn digit(x: u8) -> u8 {
@ -407,7 +411,7 @@ macro_rules! impl_Exp {
let parts = &[
numfmt::Part::Copy(buf_slice),
numfmt::Part::Zero(added_precision),
numfmt::Part::Copy(exp_slice)
numfmt::Part::Copy(exp_slice),
];
let sign = if !is_nonnegative {
"-"
@ -416,8 +420,9 @@ macro_rules! impl_Exp {
} else {
""
};
let formatted = numfmt::Formatted{sign, parts};
f.pad_formatted_parts(&formatted)
let formatted = numfmt::Formatted { sign, parts };
// SAFETY: `buf_slice` and `exp_slice` contain only ASCII characters.
unsafe { f.pad_formatted_parts(&formatted) }
}
$(

View File

@ -733,8 +733,9 @@ impl<'a> Components<'a> {
}
}
// parse a given byte sequence into the corresponding path component
fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
// parse a given byte sequence following the OsStr encoding into the
// corresponding path component
unsafe fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
match comp {
b"." if self.prefix_verbatim() => Some(Component::CurDir),
b"." => None, // . components are normalized away, except at
@ -754,7 +755,8 @@ impl<'a> Components<'a> {
None => (0, self.path),
Some(i) => (1, &self.path[..i]),
};
(comp.len() + extra, self.parse_single_component(comp))
// SAFETY: `comp` is a valid substring, since it is split on a separator.
(comp.len() + extra, unsafe { self.parse_single_component(comp) })
}
// parse a component from the right, saying how many bytes to consume to
@ -766,7 +768,8 @@ impl<'a> Components<'a> {
None => (0, &self.path[start..]),
Some(i) => (1, &self.path[start + i + 1..]),
};
(comp.len() + extra, self.parse_single_component(comp))
// SAFETY: `comp` is a valid substring, since it is split on a separator.
(comp.len() + extra, unsafe { self.parse_single_component(comp) })
}
// trim away repeated separators (i.e., empty components) on the left