implement a chained hashmap

This commit is contained in:
Niko Matsakis 2011-12-06 19:56:47 -08:00
parent 501c514e89
commit 729345cb97

View File

@ -104,6 +104,242 @@
/* Section: Operations */
mod chained {
type entry<copy K, copy V> = {
hash: uint,
key: K,
mutable value: V,
mutable next: chain<K, V>
};
tag chain<copy K, copy V> {
present(@entry<K, V>);
absent;
}
type t<copy K, copy V> = {
mutable size: uint,
mutable chains: [mutable chain<K,V>],
hasher: hashfn<K>,
eqer: eqfn<K>
};
tag search_result<copy K, copy V> {
not_found(uint);
found_first(uint, @entry<K,V>);
found_after(@entry<K,V>, @entry<K,V>);
}
fn search_rem<copy K, copy V>(tbl: t<K,V>,
k: K,
h: uint,
idx: uint,
e_root: @entry<K,V>) -> search_result<K,V> {
let e0 = e_root;
while true {
alt e0.next {
absent. {
ret not_found(idx);
}
present(e1) {
let e1_key = e1.key; // Satisfy alias checker.
if e1.hash == h && tbl.eqer(e1_key, k) {
ret found_after(e0, e1);
} else {
e0 = e1;
}
}
}
}
util::unreachable();
}
fn search_tbl<copy K, copy V>(
tbl: t<K,V>, k: K, h: uint) -> search_result<K,V> {
let idx = h % vec::len(tbl.chains);
alt tbl.chains[idx] {
absent. {
ret not_found(idx);
}
present(e) {
let e_key = e.key; // Satisfy alias checker.
if e.hash == h && tbl.eqer(e_key, k) {
ret found_first(idx, e);
} else {
ret search_rem(tbl, k, h, idx, e);
}
}
}
}
fn insert_h<copy K, copy V>(tbl: t<K,V>, k: K, v: V, hash: uint) -> bool {
// internal routine: does not update size
alt search_tbl(tbl, k, hash) {
not_found(idx) {
let old_chain = tbl.chains[idx];
tbl.chains[idx] = present(@{
hash: hash,
key: k,
mutable value: v,
mutable next: old_chain});
ret true;
}
found_first(_, entry) {
entry.value = v;
ret false;
}
found_after(_, entry) {
entry.value = v;
ret false
}
}
}
fn insert<copy K, copy V>(tbl: t<K,V>, k: K, v: V) -> bool {
tbl.size += 1u;
ret insert_h(tbl, k, v, tbl.hasher(k));
}
fn get<copy K, copy V>(tbl: t<K,V>, k: K) -> option::t<V> {
alt search_tbl(tbl, k, tbl.hasher(k)) {
not_found(_) {
ret option::none;
}
found_first(_, entry) {
ret option::some(entry.value);
}
found_after(_, entry) {
ret option::some(entry.value);
}
}
}
fn remove<copy K, copy V>(tbl: t<K,V>, k: K) -> option::t<V> {
alt search_tbl(tbl, k, tbl.hasher(k)) {
not_found(_) {
ret option::none;
}
found_first(idx, entry) {
tbl.chains[idx] = entry.next;
ret option::some(entry.value);
}
found_after(eprev, entry) {
eprev.next = entry.next;
ret option::some(entry.value);
}
}
}
fn chains<copy K, copy V>(nchains: uint) -> [mutable chain<K,V>] {
ret vec::init_elt_mut(absent, nchains);
}
fn foreach_entry<copy K, copy V>(chain0: chain<K,V>,
blk: block(@entry<K,V>)) {
let chain = chain0;
while true {
alt chain {
absent. { ret; }
present(entry) {
blk(entry);
chain = entry.next;
}
}
}
}
fn foreach_chain<copy K, copy V>(chains: [const chain<K,V>],
blk: block(@entry<K,V>)) {
let i = 0u, n = vec::len(chains);
while i < n {
foreach_entry(chains[i], blk);
i += 1u;
}
}
fn rehash<copy K, copy V>(tbl: t<K,V>) {
let old_chains = tbl.chains;
let n_old_chains = vec::len(old_chains);
let n_new_chains: uint = uint::next_power_of_two(n_old_chains + 1u);
tbl.chains = chains(n_new_chains);
foreach_chain(old_chains) { |entry|
insert_h(tbl, entry.key, entry.value, entry.hash);
}
}
fn items<copy K, copy V>(tbl: t<K,V>, blk: block(K,V)) {
let tbl_chains = tbl.chains; // Satisfy alias checker.
foreach_chain(tbl_chains) { |entry|
let key = entry.key;
let value = entry.value;
blk(key, value);
}
}
obj o<copy K, copy V>(tbl: @t<K,V>,
lf: float) {
fn size() -> uint {
ret tbl.size;
}
fn insert(k: K, v: V) -> bool {
let nchains = vec::len(tbl.chains);
let load = (tbl.size + 1u as float) / (nchains as float);
if load > lf {
rehash(*tbl);
}
ret insert(*tbl, k, v);
}
fn contains_key(k: K) -> bool {
ret option::is_some(get(*tbl, k));
}
fn get(k: K) -> V {
ret option::get(get(*tbl, k));
}
fn find(k: K) -> option::t<V> {
ret get(*tbl, k);
}
fn remove(k: K) -> option::t<V> {
ret remove(*tbl, k);
}
fn rehash() {
rehash(*tbl);
}
fn items(blk: block(K, V)) {
items(*tbl, blk);
}
fn keys(blk: block(K)) {
items(*tbl) { |k, _v| blk(k) }
}
fn values(blk: block(V)) {
items(*tbl) { |_k, v| blk(v) }
}
}
fn mk<copy K, copy V>(hasher: hashfn<K>, eqer: eqfn<K>) -> hashmap<K,V> {
let initial_capacity: uint = 32u; // 2^5
let t = @{mutable size: 0u,
mutable chains: chains(initial_capacity),
hasher: hasher,
eqer: eqer};
ret o(t, 0.75);
}
}
/*
Function: mk_hashmap
@ -114,7 +350,7 @@
hasher - The hash function for key type K
eqer - The equality function for key type K
*/
fn mk_hashmap<copy K, copy V>(hasher: hashfn<K>, eqer: eqfn<K>)
fn mk_flat_hashmap<copy K, copy V>(hasher: hashfn<K>, eqer: eqfn<K>)
-> hashmap<K, V> {
let initial_capacity: uint = 32u; // 2^5
@ -134,7 +370,7 @@ fn make_buckets<copy K, copy V>(nbkts: uint) -> [mutable bucket<K, V>] {
// buckets before the resulting pair of hash functions no longer
// probes all buckets for a fixed key. Note that hashl is made to
// output odd numbers (hence coprime to the number of nbkts, which
// is always a power of 2), so that all buckets are probed for a
// is always a power? of 2), so that all buckets are probed for a
// fixed key.
fn hashl(n: u32) -> u32 { ret (n >>> 16u32) * 2u32 + 1u32; }
@ -293,6 +529,11 @@ fn values(it: block(V)) {
ret hashmap(hasher, eqer, bkts, initial_capacity, 0u, load_factor);
}
fn mk_hashmap<copy K, copy V>(hasher: hashfn<K>, eqer: eqfn<K>)
-> hashmap<K, V> {
ret chained::mk(hasher, eqer);
}
/*
Function: new_str_hash