Fix layout of simd types and respect align in mir interpreter

This commit is contained in:
hkalbasi 2023-07-02 00:42:33 +03:30
parent 15a0da6f30
commit 6f7452882a
6 changed files with 189 additions and 22 deletions

View File

@ -147,6 +147,7 @@ fn parse_repr_tt(tt: &Subtree) -> Option<ReprOptions> {
} }
"C" => ReprFlags::IS_C, "C" => ReprFlags::IS_C,
"transparent" => ReprFlags::IS_TRANSPARENT, "transparent" => ReprFlags::IS_TRANSPARENT,
"simd" => ReprFlags::IS_SIMD,
repr => { repr => {
if let Some(builtin) = BuiltinInt::from_suffix(repr) if let Some(builtin) = BuiltinInt::from_suffix(repr)
.map(Either::Left) .map(Either::Left)

View File

@ -36,6 +36,18 @@ fn check_fail(ra_fixture: &str, error: impl FnOnce(ConstEvalError) -> bool) {
#[track_caller] #[track_caller]
fn check_number(ra_fixture: &str, answer: i128) { fn check_number(ra_fixture: &str, answer: i128) {
check_answer(ra_fixture, |b| {
assert_eq!(
b,
&answer.to_le_bytes()[0..b.len()],
"Bytes differ. In decimal form: actual = {}, expected = {answer}",
i128::from_le_bytes(pad16(b, true))
);
});
}
#[track_caller]
fn check_answer(ra_fixture: &str, check: impl FnOnce(&[u8])) {
let (db, file_id) = TestDB::with_single_file(ra_fixture); let (db, file_id) = TestDB::with_single_file(ra_fixture);
let r = match eval_goal(&db, file_id) { let r = match eval_goal(&db, file_id) {
Ok(t) => t, Ok(t) => t,
@ -47,12 +59,7 @@ fn check_number(ra_fixture: &str, answer: i128) {
match &r.data(Interner).value { match &r.data(Interner).value {
chalk_ir::ConstValue::Concrete(c) => match &c.interned { chalk_ir::ConstValue::Concrete(c) => match &c.interned {
ConstScalar::Bytes(b, _) => { ConstScalar::Bytes(b, _) => {
assert_eq!( check(b);
b,
&answer.to_le_bytes()[0..b.len()],
"Bytes differ. In decimal form: actual = {}, expected = {answer}",
i128::from_le_bytes(pad16(b, true))
);
} }
x => panic!("Expected number but found {:?}", x), x => panic!("Expected number but found {:?}", x),
}, },
@ -87,7 +94,7 @@ fn eval_goal(db: &TestDB, file_id: FileId) -> Result<Const, ConstEvalError> {
} }
_ => None, _ => None,
}) })
.unwrap(); .expect("No const named GOAL found in the test");
db.const_eval(const_id.into(), Substitution::empty(Interner)) db.const_eval(const_id.into(), Substitution::empty(Interner))
} }
@ -206,6 +213,30 @@ fn raw_pointer_equality() {
); );
} }
#[test]
fn alignment() {
check_answer(
r#"
//- minicore: transmute
use core::mem::transmute;
const GOAL: usize = {
let x: i64 = 2;
transmute(&x)
}
"#,
|b| assert_eq!(b[0] % 8, 0),
);
check_answer(
r#"
//- minicore: transmute
use core::mem::transmute;
static X: i64 = 12;
const GOAL: usize = transmute(&X);
"#,
|b| assert_eq!(b[0] % 8, 0),
);
}
#[test] #[test]
fn locals() { fn locals() {
check_number( check_number(

View File

@ -7,7 +7,7 @@ use hir_def::{
Abi, FieldsShape, Integer, LayoutCalculator, LayoutS, Primitive, ReprOptions, Scalar, Size, Abi, FieldsShape, Integer, LayoutCalculator, LayoutS, Primitive, ReprOptions, Scalar, Size,
StructKind, TargetDataLayout, WrappingRange, StructKind, TargetDataLayout, WrappingRange,
}, },
LocalEnumVariantId, LocalFieldId, LocalEnumVariantId, LocalFieldId, StructId,
}; };
use la_arena::{Idx, RawIdx}; use la_arena::{Idx, RawIdx};
use stdx::never; use stdx::never;
@ -77,6 +77,78 @@ impl<'a> LayoutCalculator for LayoutCx<'a> {
} }
} }
// FIXME: move this to the `rustc_abi`.
fn layout_of_simd_ty(
db: &dyn HirDatabase,
id: StructId,
subst: &Substitution,
krate: CrateId,
dl: &TargetDataLayout,
) -> Result<Arc<Layout>, LayoutError> {
let fields = db.field_types(id.into());
// Supported SIMD vectors are homogeneous ADTs with at least one field:
//
// * #[repr(simd)] struct S(T, T, T, T);
// * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
// * #[repr(simd)] struct S([T; 4])
//
// where T is a primitive scalar (integer/float/pointer).
let f0_ty = match fields.iter().next() {
Some(x) => x.1.clone().substitute(Interner, subst),
None => {
user_error!("simd type with zero fields");
}
};
// The element type and number of elements of the SIMD vector
// are obtained from:
//
// * the element type and length of the single array field, if
// the first field is of array type, or
//
// * the homogeneous field type and the number of fields.
let (e_ty, e_len, is_array) = if let TyKind::Array(e_ty, _) = f0_ty.kind(Interner) {
// Extract the number of elements from the layout of the array field:
let FieldsShape::Array { count, .. } = db.layout_of_ty(f0_ty.clone(), krate)?.fields else {
user_error!("Array with non array layout");
};
(e_ty.clone(), count, true)
} else {
// First ADT field is not an array:
(f0_ty, fields.iter().count() as u64, false)
};
// Compute the ABI of the element type:
let e_ly = db.layout_of_ty(e_ty, krate)?;
let Abi::Scalar(e_abi) = e_ly.abi else {
user_error!("simd type with inner non scalar type");
};
// Compute the size and alignment of the vector:
let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow)?;
let align = dl.vector_align(size);
let size = size.align_to(align.abi);
// Compute the placement of the vector fields:
let fields = if is_array {
FieldsShape::Arbitrary { offsets: [Size::ZERO].into(), memory_index: [0].into() }
} else {
FieldsShape::Array { stride: e_ly.size, count: e_len }
};
Ok(Arc::new(Layout {
variants: Variants::Single { index: struct_variant_idx() },
fields,
abi: Abi::Vector { element: e_abi, count: e_len },
largest_niche: e_ly.largest_niche,
size,
align,
}))
}
pub fn layout_of_ty_query( pub fn layout_of_ty_query(
db: &dyn HirDatabase, db: &dyn HirDatabase,
ty: Ty, ty: Ty,
@ -88,7 +160,16 @@ pub fn layout_of_ty_query(
let trait_env = Arc::new(TraitEnvironment::empty(krate)); let trait_env = Arc::new(TraitEnvironment::empty(krate));
let ty = normalize(db, trait_env, ty.clone()); let ty = normalize(db, trait_env, ty.clone());
let result = match ty.kind(Interner) { let result = match ty.kind(Interner) {
TyKind::Adt(AdtId(def), subst) => return db.layout_of_adt(*def, subst.clone(), krate), TyKind::Adt(AdtId(def), subst) => {
if let hir_def::AdtId::StructId(s) = def {
let data = db.struct_data(*s);
let repr = data.repr.unwrap_or_default();
if repr.simd() {
return layout_of_simd_ty(db, *s, subst, krate, &target);
}
};
return db.layout_of_adt(*def, subst.clone(), krate);
}
TyKind::Scalar(s) => match s { TyKind::Scalar(s) => match s {
chalk_ir::Scalar::Bool => Layout::scalar( chalk_ir::Scalar::Bool => Layout::scalar(
dl, dl,

View File

@ -270,6 +270,20 @@ struct Goal(Foo<S>);
); );
} }
#[test]
fn simd_types() {
check_size_and_align(
r#"
#[repr(simd)]
struct SimdType(i64, i64);
struct Goal(SimdType);
"#,
"",
16,
16,
);
}
#[test] #[test]
fn return_position_impl_trait() { fn return_position_impl_trait() {
size_and_align_expr! { size_and_align_expr! {

View File

@ -180,9 +180,16 @@ impl MemoryMap {
/// allocator function as `f` and it will return a mapping of old addresses to new addresses. /// allocator function as `f` and it will return a mapping of old addresses to new addresses.
fn transform_addresses( fn transform_addresses(
&self, &self,
mut f: impl FnMut(&[u8]) -> Result<usize, MirEvalError>, mut f: impl FnMut(&[u8], usize) -> Result<usize, MirEvalError>,
) -> Result<HashMap<usize, usize>, MirEvalError> { ) -> Result<HashMap<usize, usize>, MirEvalError> {
self.memory.iter().map(|x| Ok((*x.0, f(x.1)?))).collect() self.memory
.iter()
.map(|x| {
let addr = *x.0;
let align = if addr == 0 { 64 } else { (addr - (addr & (addr - 1))).min(64) };
Ok((addr, f(x.1, align)?))
})
.collect()
} }
fn get<'a>(&'a self, addr: usize, size: usize) -> Option<&'a [u8]> { fn get<'a>(&'a self, addr: usize, size: usize) -> Option<&'a [u8]> {

View File

@ -226,16 +226,26 @@ impl IntervalOrOwned {
} }
} }
#[cfg(target_pointer_width = "64")]
const STACK_OFFSET: usize = 1 << 60;
#[cfg(target_pointer_width = "64")]
const HEAP_OFFSET: usize = 1 << 59;
#[cfg(target_pointer_width = "32")]
const STACK_OFFSET: usize = 1 << 30;
#[cfg(target_pointer_width = "32")]
const HEAP_OFFSET: usize = 1 << 29;
impl Address { impl Address {
fn from_bytes(x: &[u8]) -> Result<Self> { fn from_bytes(x: &[u8]) -> Result<Self> {
Ok(Address::from_usize(from_bytes!(usize, x))) Ok(Address::from_usize(from_bytes!(usize, x)))
} }
fn from_usize(x: usize) -> Self { fn from_usize(x: usize) -> Self {
if x > usize::MAX / 2 { if x > STACK_OFFSET {
Stack(x - usize::MAX / 2) Stack(x - STACK_OFFSET)
} else if x > usize::MAX / 4 { } else if x > HEAP_OFFSET {
Heap(x - usize::MAX / 4) Heap(x - HEAP_OFFSET)
} else { } else {
Invalid(x) Invalid(x)
} }
@ -247,8 +257,8 @@ impl Address {
fn to_usize(&self) -> usize { fn to_usize(&self) -> usize {
let as_num = match self { let as_num = match self {
Stack(x) => *x + usize::MAX / 2, Stack(x) => *x + STACK_OFFSET,
Heap(x) => *x + usize::MAX / 4, Heap(x) => *x + HEAP_OFFSET,
Invalid(x) => *x, Invalid(x) => *x,
}; };
as_num as_num
@ -721,8 +731,14 @@ impl Evaluator<'_> {
.locals .locals
.iter() .iter()
.map(|(id, x)| { .map(|(id, x)| {
let size = let (size, align) = self.size_align_of_sized(
self.size_of_sized(&x.ty, &locals, "no unsized local in extending stack")?; &x.ty,
&locals,
"no unsized local in extending stack",
)?;
while stack_ptr % align != 0 {
stack_ptr += 1;
}
let my_ptr = stack_ptr; let my_ptr = stack_ptr;
stack_ptr += size; stack_ptr += size;
Ok((id, Interval { addr: Stack(my_ptr), size })) Ok((id, Interval { addr: Stack(my_ptr), size }))
@ -1469,8 +1485,8 @@ impl Evaluator<'_> {
Ok(match &c.interned { Ok(match &c.interned {
ConstScalar::Bytes(v, memory_map) => { ConstScalar::Bytes(v, memory_map) => {
let mut v: Cow<'_, [u8]> = Cow::Borrowed(v); let mut v: Cow<'_, [u8]> = Cow::Borrowed(v);
let patch_map = memory_map.transform_addresses(|b| { let patch_map = memory_map.transform_addresses(|b, align| {
let addr = self.heap_allocate(b.len(), 1); // FIXME: align is wrong let addr = self.heap_allocate(b.len(), align);
self.write_memory(addr, b)?; self.write_memory(addr, b)?;
Ok(addr.to_usize()) Ok(addr.to_usize())
})?; })?;
@ -1574,7 +1590,24 @@ impl Evaluator<'_> {
} }
} }
fn heap_allocate(&mut self, size: usize, _align: usize) -> Address { /// A version of `self.size_align_of` which returns error if the type is unsized. `what` argument should
/// be something that complete this: `error: type {ty} was unsized. {what} should be sized`
fn size_align_of_sized(
&self,
ty: &Ty,
locals: &Locals<'_>,
what: &'static str,
) -> Result<(usize, usize)> {
match self.size_align_of(ty, locals)? {
Some(x) => Ok(x),
None => Err(MirEvalError::TypeIsUnsized(ty.clone(), what)),
}
}
fn heap_allocate(&mut self, size: usize, align: usize) -> Address {
while self.heap.len() % align != 0 {
self.heap.push(0);
}
let pos = self.heap.len(); let pos = self.heap.len();
self.heap.extend(iter::repeat(0).take(size)); self.heap.extend(iter::repeat(0).take(size));
Address::Heap(pos) Address::Heap(pos)