move layout sanity check to its own file
This commit is contained in:
parent
c2e419762e
commit
6e2715074e
@ -2,7 +2,10 @@
|
||||
use crate::mir::{GeneratorLayout, GeneratorSavedLocal};
|
||||
use crate::ty::normalize_erasing_regions::NormalizationError;
|
||||
use crate::ty::subst::Subst;
|
||||
use crate::ty::{self, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable};
|
||||
use crate::ty::{
|
||||
self, layout_sanity_check::sanity_check_layout, subst::SubstsRef, EarlyBinder, ReprOptions, Ty,
|
||||
TyCtxt, TypeVisitable,
|
||||
};
|
||||
use rustc_ast as ast;
|
||||
use rustc_attr as attr;
|
||||
use rustc_hir as hir;
|
||||
@ -221,295 +224,6 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
}
|
||||
}
|
||||
|
||||
/// Enforce some basic invariants on layouts.
|
||||
fn sanity_check_layout<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
|
||||
// Type-level uninhabitedness should always imply ABI uninhabitedness.
|
||||
if cx.tcx.conservative_is_privately_uninhabited(cx.param_env.and(layout.ty)) {
|
||||
assert!(layout.abi.is_uninhabited());
|
||||
}
|
||||
|
||||
if layout.size.bytes() % layout.align.abi.bytes() != 0 {
|
||||
bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
|
||||
}
|
||||
|
||||
if cfg!(debug_assertions) {
|
||||
/// Yields non-1-ZST fields of the type
|
||||
fn non_zst_fields<'tcx, 'a>(
|
||||
cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
|
||||
layout: &'a TyAndLayout<'tcx>,
|
||||
) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
|
||||
(0..layout.layout.fields().count()).filter_map(|i| {
|
||||
let field = layout.field(cx, i);
|
||||
// Also checking `align == 1` here leads to test failures in
|
||||
// `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
|
||||
// alignment 4 that still gets ignored during layout computation (which is okay
|
||||
// since other fields already force alignment 4).
|
||||
let zst = field.is_zst();
|
||||
(!zst).then(|| (layout.fields.offset(i), field))
|
||||
})
|
||||
}
|
||||
|
||||
fn skip_newtypes<'tcx>(
|
||||
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
||||
layout: &TyAndLayout<'tcx>,
|
||||
) -> TyAndLayout<'tcx> {
|
||||
if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
|
||||
// Definitely not a newtype of anything.
|
||||
return *layout;
|
||||
}
|
||||
let mut fields = non_zst_fields(cx, layout);
|
||||
let Some(first) = fields.next() else {
|
||||
// No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
|
||||
return *layout
|
||||
};
|
||||
if fields.next().is_none() {
|
||||
let (offset, first) = first;
|
||||
if offset == Size::ZERO && first.layout.size() == layout.size {
|
||||
// This is a newtype, so keep recursing.
|
||||
// FIXME(RalfJung): I don't think it would be correct to do any checks for
|
||||
// alignment here, so we don't. Is that correct?
|
||||
return skip_newtypes(cx, &first);
|
||||
}
|
||||
}
|
||||
// No more newtypes here.
|
||||
*layout
|
||||
}
|
||||
|
||||
fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
|
||||
match layout.layout.abi() {
|
||||
Abi::Scalar(scalar) => {
|
||||
// No padding in scalars.
|
||||
let size = scalar.size(cx);
|
||||
let align = scalar.align(cx).abi;
|
||||
assert_eq!(
|
||||
layout.layout.size(),
|
||||
size,
|
||||
"size mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
assert_eq!(
|
||||
layout.layout.align().abi,
|
||||
align,
|
||||
"alignment mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
// Check that this matches the underlying field.
|
||||
let inner = skip_newtypes(cx, layout);
|
||||
assert!(
|
||||
matches!(inner.layout.abi(), Abi::Scalar(_)),
|
||||
"`Scalar` type {} is newtype around non-`Scalar` type {}",
|
||||
layout.ty,
|
||||
inner.ty
|
||||
);
|
||||
match inner.layout.fields() {
|
||||
FieldsShape::Primitive => {
|
||||
// Fine.
|
||||
}
|
||||
FieldsShape::Arbitrary { .. } => {
|
||||
// Should be an enum, the only field is the discriminant.
|
||||
assert!(
|
||||
inner.ty.is_enum(),
|
||||
"`Scalar` layout for non-primitive non-enum type {}",
|
||||
inner.ty
|
||||
);
|
||||
assert_eq!(
|
||||
inner.layout.fields().count(),
|
||||
1,
|
||||
"`Scalar` layout for multiple-field type in {inner:#?}",
|
||||
);
|
||||
let offset = inner.layout.fields().offset(0);
|
||||
let field = inner.field(cx, 0);
|
||||
// The field should be at the right offset, and match the `scalar` layout.
|
||||
assert_eq!(
|
||||
offset,
|
||||
Size::ZERO,
|
||||
"`Scalar` field at non-0 offset in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field.size, size,
|
||||
"`Scalar` field with bad size in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field.align.abi, align,
|
||||
"`Scalar` field with bad align in {inner:#?}",
|
||||
);
|
||||
assert!(
|
||||
matches!(field.abi, Abi::Scalar(_)),
|
||||
"`Scalar` field with bad ABI in {inner:#?}",
|
||||
);
|
||||
}
|
||||
_ => {
|
||||
panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
|
||||
}
|
||||
}
|
||||
}
|
||||
Abi::ScalarPair(scalar1, scalar2) => {
|
||||
// Sanity-check scalar pairs. These are a bit more flexible and support
|
||||
// padding, but we can at least ensure both fields actually fit into the layout
|
||||
// and the alignment requirement has not been weakened.
|
||||
let size1 = scalar1.size(cx);
|
||||
let align1 = scalar1.align(cx).abi;
|
||||
let size2 = scalar2.size(cx);
|
||||
let align2 = scalar2.align(cx).abi;
|
||||
assert!(
|
||||
layout.layout.align().abi >= cmp::max(align1, align2),
|
||||
"alignment mismatch between ABI and layout in {layout:#?}",
|
||||
);
|
||||
let field2_offset = size1.align_to(align2);
|
||||
assert!(
|
||||
layout.layout.size() >= field2_offset + size2,
|
||||
"size mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
// Check that the underlying pair of fields matches.
|
||||
let inner = skip_newtypes(cx, layout);
|
||||
assert!(
|
||||
matches!(inner.layout.abi(), Abi::ScalarPair(..)),
|
||||
"`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
|
||||
layout.ty,
|
||||
inner.ty
|
||||
);
|
||||
if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
|
||||
// FIXME: ScalarPair for enums is enormously complicated and it is very hard
|
||||
// to check anything about them.
|
||||
return;
|
||||
}
|
||||
match inner.layout.fields() {
|
||||
FieldsShape::Arbitrary { .. } => {
|
||||
// Checked below.
|
||||
}
|
||||
FieldsShape::Union(..) => {
|
||||
// FIXME: I guess we could also check something here? Like, look at all fields?
|
||||
return;
|
||||
}
|
||||
_ => {
|
||||
panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
|
||||
}
|
||||
}
|
||||
let mut fields = non_zst_fields(cx, &inner);
|
||||
let (offset1, field1) = fields.next().unwrap_or_else(|| {
|
||||
panic!("`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}")
|
||||
});
|
||||
let (offset2, field2) = fields.next().unwrap_or_else(|| {
|
||||
panic!("`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}")
|
||||
});
|
||||
assert!(
|
||||
fields.next().is_none(),
|
||||
"`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
|
||||
);
|
||||
// The fields might be in opposite order.
|
||||
let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
|
||||
(offset1, field1, offset2, field2)
|
||||
} else {
|
||||
(offset2, field2, offset1, field1)
|
||||
};
|
||||
// The fields should be at the right offset, and match the `scalar` layout.
|
||||
assert_eq!(
|
||||
offset1,
|
||||
Size::ZERO,
|
||||
"`ScalarPair` first field at non-0 offset in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field1.size, size1,
|
||||
"`ScalarPair` first field with bad size in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field1.align.abi, align1,
|
||||
"`ScalarPair` first field with bad align in {inner:#?}",
|
||||
);
|
||||
assert!(
|
||||
matches!(field1.abi, Abi::Scalar(_)),
|
||||
"`ScalarPair` first field with bad ABI in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
offset2, field2_offset,
|
||||
"`ScalarPair` second field at bad offset in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field2.size, size2,
|
||||
"`ScalarPair` second field with bad size in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field2.align.abi, align2,
|
||||
"`ScalarPair` second field with bad align in {inner:#?}",
|
||||
);
|
||||
assert!(
|
||||
matches!(field2.abi, Abi::Scalar(_)),
|
||||
"`ScalarPair` second field with bad ABI in {inner:#?}",
|
||||
);
|
||||
}
|
||||
Abi::Vector { count, element } => {
|
||||
// No padding in vectors. Alignment can be strengthened, though.
|
||||
assert!(
|
||||
layout.layout.align().abi >= element.align(cx).abi,
|
||||
"alignment mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
let size = element.size(cx) * count;
|
||||
assert_eq!(
|
||||
layout.layout.size(),
|
||||
size.align_to(cx.data_layout().vector_align(size).abi),
|
||||
"size mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
}
|
||||
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
|
||||
}
|
||||
}
|
||||
|
||||
check_layout_abi(cx, layout);
|
||||
|
||||
if let Variants::Multiple { variants, .. } = &layout.variants {
|
||||
for variant in variants.iter() {
|
||||
// No nested "multiple".
|
||||
assert!(matches!(variant.variants(), Variants::Single { .. }));
|
||||
// Variants should have the same or a smaller size as the full thing,
|
||||
// and same for alignment.
|
||||
if variant.size() > layout.size {
|
||||
bug!(
|
||||
"Type with size {} bytes has variant with size {} bytes: {layout:#?}",
|
||||
layout.size.bytes(),
|
||||
variant.size().bytes(),
|
||||
)
|
||||
}
|
||||
if variant.align().abi > layout.align.abi {
|
||||
bug!(
|
||||
"Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
|
||||
layout.align.abi.bytes(),
|
||||
variant.align().abi.bytes(),
|
||||
)
|
||||
}
|
||||
// Skip empty variants.
|
||||
if variant.size() == Size::ZERO
|
||||
|| variant.fields().count() == 0
|
||||
|| variant.abi().is_uninhabited()
|
||||
{
|
||||
// These are never actually accessed anyway, so we can skip the coherence check
|
||||
// for them. They also fail that check, since they have
|
||||
// `Aggregate`/`Uninhbaited` ABI even when the main type is
|
||||
// `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
|
||||
// 0, and sometimes, variants without fields have non-0 size.)
|
||||
continue;
|
||||
}
|
||||
// The top-level ABI and the ABI of the variants should be coherent.
|
||||
let scalar_coherent = |s1: Scalar, s2: Scalar| {
|
||||
s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx)
|
||||
};
|
||||
let abi_coherent = match (layout.abi, variant.abi()) {
|
||||
(Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
|
||||
(Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
|
||||
scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
|
||||
}
|
||||
(Abi::Uninhabited, _) => true,
|
||||
(Abi::Aggregate { .. }, _) => true,
|
||||
_ => false,
|
||||
};
|
||||
if !abi_coherent {
|
||||
bug!(
|
||||
"Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
|
||||
variant
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[instrument(skip(tcx, query), level = "debug")]
|
||||
fn layout_of<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
|
299
compiler/rustc_middle/src/ty/layout_sanity_check.rs
Normal file
299
compiler/rustc_middle/src/ty/layout_sanity_check.rs
Normal file
@ -0,0 +1,299 @@
|
||||
use crate::ty::{
|
||||
layout::{LayoutCx, TyAndLayout},
|
||||
TyCtxt,
|
||||
};
|
||||
use rustc_target::abi::*;
|
||||
|
||||
use std::cmp;
|
||||
|
||||
/// Enforce some basic invariants on layouts.
|
||||
pub(super) fn sanity_check_layout<'tcx>(
|
||||
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
||||
layout: &TyAndLayout<'tcx>,
|
||||
) {
|
||||
// Type-level uninhabitedness should always imply ABI uninhabitedness.
|
||||
if cx.tcx.conservative_is_privately_uninhabited(cx.param_env.and(layout.ty)) {
|
||||
assert!(layout.abi.is_uninhabited());
|
||||
}
|
||||
|
||||
if layout.size.bytes() % layout.align.abi.bytes() != 0 {
|
||||
bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
|
||||
}
|
||||
|
||||
if cfg!(debug_assertions) {
|
||||
/// Yields non-1-ZST fields of the type
|
||||
fn non_zst_fields<'tcx, 'a>(
|
||||
cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
|
||||
layout: &'a TyAndLayout<'tcx>,
|
||||
) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
|
||||
(0..layout.layout.fields().count()).filter_map(|i| {
|
||||
let field = layout.field(cx, i);
|
||||
// Also checking `align == 1` here leads to test failures in
|
||||
// `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
|
||||
// alignment 4 that still gets ignored during layout computation (which is okay
|
||||
// since other fields already force alignment 4).
|
||||
let zst = field.is_zst();
|
||||
(!zst).then(|| (layout.fields.offset(i), field))
|
||||
})
|
||||
}
|
||||
|
||||
fn skip_newtypes<'tcx>(
|
||||
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
||||
layout: &TyAndLayout<'tcx>,
|
||||
) -> TyAndLayout<'tcx> {
|
||||
if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
|
||||
// Definitely not a newtype of anything.
|
||||
return *layout;
|
||||
}
|
||||
let mut fields = non_zst_fields(cx, layout);
|
||||
let Some(first) = fields.next() else {
|
||||
// No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
|
||||
return *layout
|
||||
};
|
||||
if fields.next().is_none() {
|
||||
let (offset, first) = first;
|
||||
if offset == Size::ZERO && first.layout.size() == layout.size {
|
||||
// This is a newtype, so keep recursing.
|
||||
// FIXME(RalfJung): I don't think it would be correct to do any checks for
|
||||
// alignment here, so we don't. Is that correct?
|
||||
return skip_newtypes(cx, &first);
|
||||
}
|
||||
}
|
||||
// No more newtypes here.
|
||||
*layout
|
||||
}
|
||||
|
||||
fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
|
||||
match layout.layout.abi() {
|
||||
Abi::Scalar(scalar) => {
|
||||
// No padding in scalars.
|
||||
let size = scalar.size(cx);
|
||||
let align = scalar.align(cx).abi;
|
||||
assert_eq!(
|
||||
layout.layout.size(),
|
||||
size,
|
||||
"size mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
assert_eq!(
|
||||
layout.layout.align().abi,
|
||||
align,
|
||||
"alignment mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
// Check that this matches the underlying field.
|
||||
let inner = skip_newtypes(cx, layout);
|
||||
assert!(
|
||||
matches!(inner.layout.abi(), Abi::Scalar(_)),
|
||||
"`Scalar` type {} is newtype around non-`Scalar` type {}",
|
||||
layout.ty,
|
||||
inner.ty
|
||||
);
|
||||
match inner.layout.fields() {
|
||||
FieldsShape::Primitive => {
|
||||
// Fine.
|
||||
}
|
||||
FieldsShape::Arbitrary { .. } => {
|
||||
// Should be an enum, the only field is the discriminant.
|
||||
assert!(
|
||||
inner.ty.is_enum(),
|
||||
"`Scalar` layout for non-primitive non-enum type {}",
|
||||
inner.ty
|
||||
);
|
||||
assert_eq!(
|
||||
inner.layout.fields().count(),
|
||||
1,
|
||||
"`Scalar` layout for multiple-field type in {inner:#?}",
|
||||
);
|
||||
let offset = inner.layout.fields().offset(0);
|
||||
let field = inner.field(cx, 0);
|
||||
// The field should be at the right offset, and match the `scalar` layout.
|
||||
assert_eq!(
|
||||
offset,
|
||||
Size::ZERO,
|
||||
"`Scalar` field at non-0 offset in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field.size, size,
|
||||
"`Scalar` field with bad size in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field.align.abi, align,
|
||||
"`Scalar` field with bad align in {inner:#?}",
|
||||
);
|
||||
assert!(
|
||||
matches!(field.abi, Abi::Scalar(_)),
|
||||
"`Scalar` field with bad ABI in {inner:#?}",
|
||||
);
|
||||
}
|
||||
_ => {
|
||||
panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
|
||||
}
|
||||
}
|
||||
}
|
||||
Abi::ScalarPair(scalar1, scalar2) => {
|
||||
// Sanity-check scalar pairs. These are a bit more flexible and support
|
||||
// padding, but we can at least ensure both fields actually fit into the layout
|
||||
// and the alignment requirement has not been weakened.
|
||||
let size1 = scalar1.size(cx);
|
||||
let align1 = scalar1.align(cx).abi;
|
||||
let size2 = scalar2.size(cx);
|
||||
let align2 = scalar2.align(cx).abi;
|
||||
assert!(
|
||||
layout.layout.align().abi >= cmp::max(align1, align2),
|
||||
"alignment mismatch between ABI and layout in {layout:#?}",
|
||||
);
|
||||
let field2_offset = size1.align_to(align2);
|
||||
assert!(
|
||||
layout.layout.size() >= field2_offset + size2,
|
||||
"size mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
// Check that the underlying pair of fields matches.
|
||||
let inner = skip_newtypes(cx, layout);
|
||||
assert!(
|
||||
matches!(inner.layout.abi(), Abi::ScalarPair(..)),
|
||||
"`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
|
||||
layout.ty,
|
||||
inner.ty
|
||||
);
|
||||
if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
|
||||
// FIXME: ScalarPair for enums is enormously complicated and it is very hard
|
||||
// to check anything about them.
|
||||
return;
|
||||
}
|
||||
match inner.layout.fields() {
|
||||
FieldsShape::Arbitrary { .. } => {
|
||||
// Checked below.
|
||||
}
|
||||
FieldsShape::Union(..) => {
|
||||
// FIXME: I guess we could also check something here? Like, look at all fields?
|
||||
return;
|
||||
}
|
||||
_ => {
|
||||
panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
|
||||
}
|
||||
}
|
||||
let mut fields = non_zst_fields(cx, &inner);
|
||||
let (offset1, field1) = fields.next().unwrap_or_else(|| {
|
||||
panic!("`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}")
|
||||
});
|
||||
let (offset2, field2) = fields.next().unwrap_or_else(|| {
|
||||
panic!("`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}")
|
||||
});
|
||||
assert!(
|
||||
fields.next().is_none(),
|
||||
"`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
|
||||
);
|
||||
// The fields might be in opposite order.
|
||||
let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
|
||||
(offset1, field1, offset2, field2)
|
||||
} else {
|
||||
(offset2, field2, offset1, field1)
|
||||
};
|
||||
// The fields should be at the right offset, and match the `scalar` layout.
|
||||
assert_eq!(
|
||||
offset1,
|
||||
Size::ZERO,
|
||||
"`ScalarPair` first field at non-0 offset in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field1.size, size1,
|
||||
"`ScalarPair` first field with bad size in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field1.align.abi, align1,
|
||||
"`ScalarPair` first field with bad align in {inner:#?}",
|
||||
);
|
||||
assert!(
|
||||
matches!(field1.abi, Abi::Scalar(_)),
|
||||
"`ScalarPair` first field with bad ABI in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
offset2, field2_offset,
|
||||
"`ScalarPair` second field at bad offset in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field2.size, size2,
|
||||
"`ScalarPair` second field with bad size in {inner:#?}",
|
||||
);
|
||||
assert_eq!(
|
||||
field2.align.abi, align2,
|
||||
"`ScalarPair` second field with bad align in {inner:#?}",
|
||||
);
|
||||
assert!(
|
||||
matches!(field2.abi, Abi::Scalar(_)),
|
||||
"`ScalarPair` second field with bad ABI in {inner:#?}",
|
||||
);
|
||||
}
|
||||
Abi::Vector { count, element } => {
|
||||
// No padding in vectors. Alignment can be strengthened, though.
|
||||
assert!(
|
||||
layout.layout.align().abi >= element.align(cx).abi,
|
||||
"alignment mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
let size = element.size(cx) * count;
|
||||
assert_eq!(
|
||||
layout.layout.size(),
|
||||
size.align_to(cx.data_layout().vector_align(size).abi),
|
||||
"size mismatch between ABI and layout in {layout:#?}"
|
||||
);
|
||||
}
|
||||
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
|
||||
}
|
||||
}
|
||||
|
||||
check_layout_abi(cx, layout);
|
||||
|
||||
if let Variants::Multiple { variants, .. } = &layout.variants {
|
||||
for variant in variants.iter() {
|
||||
// No nested "multiple".
|
||||
assert!(matches!(variant.variants(), Variants::Single { .. }));
|
||||
// Variants should have the same or a smaller size as the full thing,
|
||||
// and same for alignment.
|
||||
if variant.size() > layout.size {
|
||||
bug!(
|
||||
"Type with size {} bytes has variant with size {} bytes: {layout:#?}",
|
||||
layout.size.bytes(),
|
||||
variant.size().bytes(),
|
||||
)
|
||||
}
|
||||
if variant.align().abi > layout.align.abi {
|
||||
bug!(
|
||||
"Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
|
||||
layout.align.abi.bytes(),
|
||||
variant.align().abi.bytes(),
|
||||
)
|
||||
}
|
||||
// Skip empty variants.
|
||||
if variant.size() == Size::ZERO
|
||||
|| variant.fields().count() == 0
|
||||
|| variant.abi().is_uninhabited()
|
||||
{
|
||||
// These are never actually accessed anyway, so we can skip the coherence check
|
||||
// for them. They also fail that check, since they have
|
||||
// `Aggregate`/`Uninhbaited` ABI even when the main type is
|
||||
// `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
|
||||
// 0, and sometimes, variants without fields have non-0 size.)
|
||||
continue;
|
||||
}
|
||||
// The top-level ABI and the ABI of the variants should be coherent.
|
||||
let scalar_coherent = |s1: Scalar, s2: Scalar| {
|
||||
s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx)
|
||||
};
|
||||
let abi_coherent = match (layout.abi, variant.abi()) {
|
||||
(Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
|
||||
(Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
|
||||
scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
|
||||
}
|
||||
(Abi::Uninhabited, _) => true,
|
||||
(Abi::Aggregate { .. }, _) => true,
|
||||
_ => false,
|
||||
};
|
||||
if !abi_coherent {
|
||||
bug!(
|
||||
"Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
|
||||
variant
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -124,6 +124,7 @@
|
||||
mod generics;
|
||||
mod impls_ty;
|
||||
mod instance;
|
||||
mod layout_sanity_check;
|
||||
mod list;
|
||||
mod parameterized;
|
||||
mod rvalue_scopes;
|
||||
|
Loading…
Reference in New Issue
Block a user