Rollup merge of #77305 - lcnr:candidate_from_obligation, r=davidtwco
move candidate_from_obligation_no_cache It's only called from `candidate_from_obligation` which is already in this file.
This commit is contained in:
commit
6d3cfd9d51
@ -7,14 +7,19 @@
|
||||
//! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
|
||||
use rustc_hir as hir;
|
||||
use rustc_infer::traits::{Obligation, SelectionError, TraitObligation};
|
||||
use rustc_middle::ty::print::with_no_trimmed_paths;
|
||||
use rustc_middle::ty::{self, TypeFoldable};
|
||||
use rustc_target::spec::abi::Abi;
|
||||
|
||||
use crate::traits::coherence::Conflict;
|
||||
use crate::traits::{util, SelectionResult};
|
||||
use crate::traits::{Overflow, Unimplemented};
|
||||
|
||||
use super::BuiltinImplConditions;
|
||||
use super::IntercrateAmbiguityCause;
|
||||
use super::OverflowError;
|
||||
use super::SelectionCandidate::{self, *};
|
||||
use super::{SelectionCandidateSet, SelectionContext, TraitObligationStack};
|
||||
use super::{EvaluatedCandidate, SelectionCandidateSet, SelectionContext, TraitObligationStack};
|
||||
|
||||
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
pub(super) fn candidate_from_obligation<'o>(
|
||||
@ -62,6 +67,161 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
candidate
|
||||
}
|
||||
|
||||
fn candidate_from_obligation_no_cache<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
|
||||
if let Some(conflict) = self.is_knowable(stack) {
|
||||
debug!("coherence stage: not knowable");
|
||||
if self.intercrate_ambiguity_causes.is_some() {
|
||||
debug!("evaluate_stack: intercrate_ambiguity_causes is some");
|
||||
// Heuristics: show the diagnostics when there are no candidates in crate.
|
||||
if let Ok(candidate_set) = self.assemble_candidates(stack) {
|
||||
let mut no_candidates_apply = true;
|
||||
|
||||
for c in candidate_set.vec.iter() {
|
||||
if self.evaluate_candidate(stack, &c)?.may_apply() {
|
||||
no_candidates_apply = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if !candidate_set.ambiguous && no_candidates_apply {
|
||||
let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
|
||||
let self_ty = trait_ref.self_ty();
|
||||
let (trait_desc, self_desc) = with_no_trimmed_paths(|| {
|
||||
let trait_desc = trait_ref.print_only_trait_path().to_string();
|
||||
let self_desc = if self_ty.has_concrete_skeleton() {
|
||||
Some(self_ty.to_string())
|
||||
} else {
|
||||
None
|
||||
};
|
||||
(trait_desc, self_desc)
|
||||
});
|
||||
let cause = if let Conflict::Upstream = conflict {
|
||||
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
|
||||
} else {
|
||||
IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
|
||||
};
|
||||
debug!("evaluate_stack: pushing cause = {:?}", cause);
|
||||
self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
|
||||
}
|
||||
}
|
||||
}
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
let candidate_set = self.assemble_candidates(stack)?;
|
||||
|
||||
if candidate_set.ambiguous {
|
||||
debug!("candidate set contains ambig");
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
let mut candidates = candidate_set.vec;
|
||||
|
||||
debug!("assembled {} candidates for {:?}: {:?}", candidates.len(), stack, candidates);
|
||||
|
||||
// At this point, we know that each of the entries in the
|
||||
// candidate set is *individually* applicable. Now we have to
|
||||
// figure out if they contain mutual incompatibilities. This
|
||||
// frequently arises if we have an unconstrained input type --
|
||||
// for example, we are looking for `$0: Eq` where `$0` is some
|
||||
// unconstrained type variable. In that case, we'll get a
|
||||
// candidate which assumes $0 == int, one that assumes `$0 ==
|
||||
// usize`, etc. This spells an ambiguity.
|
||||
|
||||
// If there is more than one candidate, first winnow them down
|
||||
// by considering extra conditions (nested obligations and so
|
||||
// forth). We don't winnow if there is exactly one
|
||||
// candidate. This is a relatively minor distinction but it
|
||||
// can lead to better inference and error-reporting. An
|
||||
// example would be if there was an impl:
|
||||
//
|
||||
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
|
||||
//
|
||||
// and we were to see some code `foo.push_clone()` where `boo`
|
||||
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
|
||||
// we were to winnow, we'd wind up with zero candidates.
|
||||
// Instead, we select the right impl now but report "`Bar` does
|
||||
// not implement `Clone`".
|
||||
if candidates.len() == 1 {
|
||||
return self.filter_negative_and_reservation_impls(candidates.pop().unwrap());
|
||||
}
|
||||
|
||||
// Winnow, but record the exact outcome of evaluation, which
|
||||
// is needed for specialization. Propagate overflow if it occurs.
|
||||
let mut candidates = candidates
|
||||
.into_iter()
|
||||
.map(|c| match self.evaluate_candidate(stack, &c) {
|
||||
Ok(eval) if eval.may_apply() => {
|
||||
Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
|
||||
}
|
||||
Ok(_) => Ok(None),
|
||||
Err(OverflowError) => Err(Overflow),
|
||||
})
|
||||
.flat_map(Result::transpose)
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
debug!("winnowed to {} candidates for {:?}: {:?}", candidates.len(), stack, candidates);
|
||||
|
||||
let needs_infer = stack.obligation.predicate.needs_infer();
|
||||
|
||||
// If there are STILL multiple candidates, we can further
|
||||
// reduce the list by dropping duplicates -- including
|
||||
// resolving specializations.
|
||||
if candidates.len() > 1 {
|
||||
let mut i = 0;
|
||||
while i < candidates.len() {
|
||||
let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
|
||||
self.candidate_should_be_dropped_in_favor_of(
|
||||
&candidates[i],
|
||||
&candidates[j],
|
||||
needs_infer,
|
||||
)
|
||||
});
|
||||
if is_dup {
|
||||
debug!("Dropping candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]);
|
||||
candidates.swap_remove(i);
|
||||
} else {
|
||||
debug!("Retaining candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]);
|
||||
i += 1;
|
||||
|
||||
// If there are *STILL* multiple candidates, give up
|
||||
// and report ambiguity.
|
||||
if i > 1 {
|
||||
debug!("multiple matches, ambig");
|
||||
return Ok(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If there are *NO* candidates, then there are no impls --
|
||||
// that we know of, anyway. Note that in the case where there
|
||||
// are unbound type variables within the obligation, it might
|
||||
// be the case that you could still satisfy the obligation
|
||||
// from another crate by instantiating the type variables with
|
||||
// a type from another crate that does have an impl. This case
|
||||
// is checked for in `evaluate_stack` (and hence users
|
||||
// who might care about this case, like coherence, should use
|
||||
// that function).
|
||||
if candidates.is_empty() {
|
||||
// If there's an error type, 'downgrade' our result from
|
||||
// `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
|
||||
// emitting additional spurious errors, since we're guaranteed
|
||||
// to have emitted at least one.
|
||||
if stack.obligation.references_error() {
|
||||
debug!("no results for error type, treating as ambiguous");
|
||||
return Ok(None);
|
||||
}
|
||||
return Err(Unimplemented);
|
||||
}
|
||||
|
||||
// Just one candidate left.
|
||||
self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate)
|
||||
}
|
||||
|
||||
pub(super) fn assemble_candidates<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
|
@ -1029,161 +1029,6 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
Ok(Some(candidate))
|
||||
}
|
||||
|
||||
fn candidate_from_obligation_no_cache<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
|
||||
if let Some(conflict) = self.is_knowable(stack) {
|
||||
debug!("coherence stage: not knowable");
|
||||
if self.intercrate_ambiguity_causes.is_some() {
|
||||
debug!("evaluate_stack: intercrate_ambiguity_causes is some");
|
||||
// Heuristics: show the diagnostics when there are no candidates in crate.
|
||||
if let Ok(candidate_set) = self.assemble_candidates(stack) {
|
||||
let mut no_candidates_apply = true;
|
||||
|
||||
for c in candidate_set.vec.iter() {
|
||||
if self.evaluate_candidate(stack, &c)?.may_apply() {
|
||||
no_candidates_apply = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if !candidate_set.ambiguous && no_candidates_apply {
|
||||
let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
|
||||
let self_ty = trait_ref.self_ty();
|
||||
let (trait_desc, self_desc) = with_no_trimmed_paths(|| {
|
||||
let trait_desc = trait_ref.print_only_trait_path().to_string();
|
||||
let self_desc = if self_ty.has_concrete_skeleton() {
|
||||
Some(self_ty.to_string())
|
||||
} else {
|
||||
None
|
||||
};
|
||||
(trait_desc, self_desc)
|
||||
});
|
||||
let cause = if let Conflict::Upstream = conflict {
|
||||
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
|
||||
} else {
|
||||
IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
|
||||
};
|
||||
debug!("evaluate_stack: pushing cause = {:?}", cause);
|
||||
self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
|
||||
}
|
||||
}
|
||||
}
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
let candidate_set = self.assemble_candidates(stack)?;
|
||||
|
||||
if candidate_set.ambiguous {
|
||||
debug!("candidate set contains ambig");
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
let mut candidates = candidate_set.vec;
|
||||
|
||||
debug!("assembled {} candidates for {:?}: {:?}", candidates.len(), stack, candidates);
|
||||
|
||||
// At this point, we know that each of the entries in the
|
||||
// candidate set is *individually* applicable. Now we have to
|
||||
// figure out if they contain mutual incompatibilities. This
|
||||
// frequently arises if we have an unconstrained input type --
|
||||
// for example, we are looking for `$0: Eq` where `$0` is some
|
||||
// unconstrained type variable. In that case, we'll get a
|
||||
// candidate which assumes $0 == int, one that assumes `$0 ==
|
||||
// usize`, etc. This spells an ambiguity.
|
||||
|
||||
// If there is more than one candidate, first winnow them down
|
||||
// by considering extra conditions (nested obligations and so
|
||||
// forth). We don't winnow if there is exactly one
|
||||
// candidate. This is a relatively minor distinction but it
|
||||
// can lead to better inference and error-reporting. An
|
||||
// example would be if there was an impl:
|
||||
//
|
||||
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
|
||||
//
|
||||
// and we were to see some code `foo.push_clone()` where `boo`
|
||||
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
|
||||
// we were to winnow, we'd wind up with zero candidates.
|
||||
// Instead, we select the right impl now but report "`Bar` does
|
||||
// not implement `Clone`".
|
||||
if candidates.len() == 1 {
|
||||
return self.filter_negative_and_reservation_impls(candidates.pop().unwrap());
|
||||
}
|
||||
|
||||
// Winnow, but record the exact outcome of evaluation, which
|
||||
// is needed for specialization. Propagate overflow if it occurs.
|
||||
let mut candidates = candidates
|
||||
.into_iter()
|
||||
.map(|c| match self.evaluate_candidate(stack, &c) {
|
||||
Ok(eval) if eval.may_apply() => {
|
||||
Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
|
||||
}
|
||||
Ok(_) => Ok(None),
|
||||
Err(OverflowError) => Err(Overflow),
|
||||
})
|
||||
.flat_map(Result::transpose)
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
debug!("winnowed to {} candidates for {:?}: {:?}", candidates.len(), stack, candidates);
|
||||
|
||||
let needs_infer = stack.obligation.predicate.needs_infer();
|
||||
|
||||
// If there are STILL multiple candidates, we can further
|
||||
// reduce the list by dropping duplicates -- including
|
||||
// resolving specializations.
|
||||
if candidates.len() > 1 {
|
||||
let mut i = 0;
|
||||
while i < candidates.len() {
|
||||
let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
|
||||
self.candidate_should_be_dropped_in_favor_of(
|
||||
&candidates[i],
|
||||
&candidates[j],
|
||||
needs_infer,
|
||||
)
|
||||
});
|
||||
if is_dup {
|
||||
debug!("Dropping candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]);
|
||||
candidates.swap_remove(i);
|
||||
} else {
|
||||
debug!("Retaining candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]);
|
||||
i += 1;
|
||||
|
||||
// If there are *STILL* multiple candidates, give up
|
||||
// and report ambiguity.
|
||||
if i > 1 {
|
||||
debug!("multiple matches, ambig");
|
||||
return Ok(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If there are *NO* candidates, then there are no impls --
|
||||
// that we know of, anyway. Note that in the case where there
|
||||
// are unbound type variables within the obligation, it might
|
||||
// be the case that you could still satisfy the obligation
|
||||
// from another crate by instantiating the type variables with
|
||||
// a type from another crate that does have an impl. This case
|
||||
// is checked for in `evaluate_stack` (and hence users
|
||||
// who might care about this case, like coherence, should use
|
||||
// that function).
|
||||
if candidates.is_empty() {
|
||||
// If there's an error type, 'downgrade' our result from
|
||||
// `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
|
||||
// emitting additional spurious errors, since we're guaranteed
|
||||
// to have emitted at least one.
|
||||
if stack.obligation.references_error() {
|
||||
debug!("no results for error type, treating as ambiguous");
|
||||
return Ok(None);
|
||||
}
|
||||
return Err(Unimplemented);
|
||||
}
|
||||
|
||||
// Just one candidate left.
|
||||
self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate)
|
||||
}
|
||||
|
||||
fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
|
||||
debug!("is_knowable(intercrate={:?})", self.intercrate);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user