From 652dc73b4db157f46c4a022be7f2fdcf81f3ad56 Mon Sep 17 00:00:00 2001 From: Graydon Hoare Date: Sun, 30 Jun 2013 17:34:23 -0700 Subject: [PATCH] extra: docs, tests and new functionality for the extra::stats module --- src/libextra/stats.rs | 852 +++++++++++++++++++++++++++++++++++++++++- 1 file changed, 832 insertions(+), 20 deletions(-) diff --git a/src/libextra/stats.rs b/src/libextra/stats.rs index 8351e4db6b8..0271b393f61 100644 --- a/src/libextra/stats.rs +++ b/src/libextra/stats.rs @@ -8,32 +8,135 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. -#[allow(missing_doc)]; - - -use std::f64; -use std::cmp; -use std::num; -use std::vec; use sort; +use std::cmp; +use std::io; +use std::num; +use std::f64; +use std::vec; // NB: this can probably be rewritten in terms of num::Num // to be less f64-specific. +/// Trait that provides simple descriptive statistics on a univariate set of numeric samples. pub trait Stats { + + /// Sum of the samples. fn sum(self) -> f64; + + /// Minimum value of the samples. fn min(self) -> f64; + + /// Maximum value of the samples. fn max(self) -> f64; + + /// Arithmetic mean (average) of the samples: sum divided by sample-count. + /// + /// See: https://en.wikipedia.org/wiki/Arithmetic_mean fn mean(self) -> f64; + + /// Median of the samples: value separating the lower half of the samples from the higher half. + /// Equal to `self.percentile(50.0)`. + /// + /// See: https://en.wikipedia.org/wiki/Median fn median(self) -> f64; + + /// Variance of the samples: bias-corrected mean of the squares of the differences of each + /// sample from the sample mean. Note that this calculates the _sample variance_ rather than the + /// population variance, which is assumed to be unknown. It therefore corrects the `(n-1)/n` + /// bias that would appear if we calculated a population variance, by dividing by `(n-1)` rather + /// than `n`. + /// + /// See: https://en.wikipedia.org/wiki/Variance fn var(self) -> f64; + + /// Standard deviation: the square root of the sample variance. + /// + /// Note: this is not a robust statistic for non-normal distributions. Prefer the + /// `median_abs_dev` for unknown distributions. + /// + /// See: https://en.wikipedia.org/wiki/Standard_deviation fn std_dev(self) -> f64; + + /// Standard deviation as a percent of the mean value. See `std_dev` and `mean`. + /// + /// Note: this is not a robust statistic for non-normal distributions. Prefer the + /// `median_abs_dev_pct` for unknown distributions. fn std_dev_pct(self) -> f64; + + /// Scaled median of the absolute deviations of each sample from the sample median. This is a + /// robust (distribution-agnostic) estimator of sample variability. Use this in preference to + /// `std_dev` if you cannot assume your sample is normally distributed. Note that this is scaled + /// by the constant `1.4826` to allow its use as a consistent estimator for the standard + /// deviation. + /// + /// See: http://en.wikipedia.org/wiki/Median_absolute_deviation fn median_abs_dev(self) -> f64; + + /// Median absolute deviation as a percent of the median. See `median_abs_dev` and `median`. fn median_abs_dev_pct(self) -> f64; + + /// Percentile: the value below which `pct` percent of the values in `self` fall. For example, + /// percentile(95.0) will return the value `v` such that that 95% of the samples `s` in `self` + /// satisfy `s <= v`. + /// + /// Calculated by linear interpolation between closest ranks. + /// + /// See: http://en.wikipedia.org/wiki/Percentile + fn percentile(self, pct: f64) -> f64; + + /// Quartiles of the sample: three values that divide the sample into four equal groups, each + /// with 1/4 of the data. The middle value is the median. See `median` and `percentile`. This + /// function may calculate the 3 quartiles more efficiently than 3 calls to `percentile`, but + /// is otherwise equivalent. + /// + /// See also: https://en.wikipedia.org/wiki/Quartile + fn quartiles(self) -> (f64,f64,f64); + + /// Inter-quartile range: the difference between the 25th percentile (1st quartile) and the 75th + /// percentile (3rd quartile). See `quartiles`. + /// + /// See also: https://en.wikipedia.org/wiki/Interquartile_range + fn iqr(self) -> f64; +} + +/// Extracted collection of all the summary statistics of a sample set. +struct Summary { + sum: f64, + min: f64, + max: f64, + mean: f64, + median: f64, + var: f64, + std_dev: f64, + std_dev_pct: f64, + median_abs_dev: f64, + median_abs_dev_pct: f64, + quartiles: (f64,f64,f64), + iqr: f64, +} + +impl Summary { + fn new(samples: &[f64]) -> Summary { + Summary { + sum: samples.sum(), + min: samples.min(), + max: samples.max(), + mean: samples.mean(), + median: samples.median(), + var: samples.var(), + std_dev: samples.std_dev(), + std_dev_pct: samples.std_dev_pct(), + median_abs_dev: samples.median_abs_dev(), + median_abs_dev_pct: samples.median_abs_dev_pct(), + quartiles: samples.quartiles(), + iqr: samples.iqr() + } + } } impl<'self> Stats for &'self [f64] { + fn sum(self) -> f64 { self.iter().fold(0.0, |p,q| p + *q) } @@ -54,19 +157,11 @@ impl<'self> Stats for &'self [f64] { } fn median(self) -> f64 { - assert!(self.len() != 0); - let mut tmp = vec::to_owned(self); - sort::tim_sort(tmp); - if tmp.len() & 1 == 0 { - let m = tmp.len() / 2; - (tmp[m] + tmp[m-1]) / 2.0 - } else { - tmp[tmp.len() / 2] - } + self.percentile(50.0) } fn var(self) -> f64 { - if self.len() == 0 { + if self.len() < 2 { 0.0 } else { let mean = self.mean(); @@ -75,7 +170,10 @@ impl<'self> Stats for &'self [f64] { let x = *s - mean; v += x*x; } - v/(self.len() as f64) + // NB: this is _supposed to be_ len-1, not len. If you + // change it back to len, you will be calculating a + // population variance, not a sample variance. + v/((self.len()-1) as f64) } } @@ -89,11 +187,725 @@ impl<'self> Stats for &'self [f64] { fn median_abs_dev(self) -> f64 { let med = self.median(); - let abs_devs = self.map(|v| num::abs(med - *v)); - abs_devs.median() + let abs_devs = self.map(|&v| num::abs(med - v)); + // This constant is derived by smarter statistics brains than me, but it is + // consistent with how R and other packages treat the MAD. + abs_devs.median() * 1.4826 } fn median_abs_dev_pct(self) -> f64 { (self.median_abs_dev() / self.median()) * 100.0 } + + fn percentile(self, pct: f64) -> f64 { + let mut tmp = vec::to_owned(self); + sort::tim_sort(tmp); + percentile_of_sorted(tmp, pct) + } + + fn quartiles(self) -> (f64,f64,f64) { + let mut tmp = vec::to_owned(self); + sort::tim_sort(tmp); + let a = percentile_of_sorted(tmp, 25.0); + let b = percentile_of_sorted(tmp, 50.0); + let c = percentile_of_sorted(tmp, 75.0); + (a,b,c) + } + + fn iqr(self) -> f64 { + let (a,_,c) = self.quartiles(); + c - a + } +} + + +// Helper function: extract a value representing the `pct` percentile of a sorted sample-set, using +// linear interpolation. If samples are not sorted, return nonsensical value. +priv fn percentile_of_sorted(sorted_samples: &[f64], + pct: f64) -> f64 { + assert!(sorted_samples.len() != 0); + if sorted_samples.len() == 1 { + return sorted_samples[0]; + } + assert!(0.0 <= pct); + assert!(pct <= 100.0); + if pct == 100.0 { + return sorted_samples[sorted_samples.len() - 1]; + } + let rank = (pct / 100.0) * ((sorted_samples.len() - 1) as f64); + let lrank = rank.floor(); + let d = rank - lrank; + let n = lrank as uint; + let lo = sorted_samples[n]; + let hi = sorted_samples[n+1]; + lo + (hi - lo) * d +} + + +/// Winsorize a set of samples, replacing values above the `100-pct` percentile and below the `pct` +/// percentile with those percentiles themselves. This is a way of minimizing the effect of +/// outliers, at the cost of biasing the sample. It differs from trimming in that it does not +/// change the number of samples, just changes the values of those that are outliers. +/// +/// See: http://en.wikipedia.org/wiki/Winsorising +pub fn winsorize(samples: &mut [f64], pct: f64) { + let mut tmp = vec::to_owned(samples); + sort::tim_sort(tmp); + let lo = percentile_of_sorted(tmp, pct); + let hi = percentile_of_sorted(tmp, 100.0-pct); + for samples.mut_iter().advance |samp| { + if *samp > hi { + *samp = hi + } else if *samp < lo { + *samp = lo + } + } +} + +/// Render writes the min, max and quartiles of the provided `Summary` to the provided `Writer`. +pub fn write_5_number_summary(w: @io::Writer, s: &Summary) { + let (q1,q2,q3) = s.quartiles; + w.write_str(fmt!("(min=%f, q1=%f, med=%f, q3=%f, max=%f)", + s.min as float, + q1 as float, + q2 as float, + q3 as float, + s.max as float)); +} + +/// Render a boxplot to the provided writer. The boxplot shows the min, max and quartiles of the +/// provided `Summary` (thus includes the mean) and is scaled to display within the range of the +/// nearest multiple-of-a-power-of-ten above and below the min and max of possible values, and +/// target `width_hint` characters of display (though it will be wider if necessary). +/// +/// As an example, the summary with 5-number-summary `(min=15, q1=17, med=20, q3=24, max=31)` might +/// display as: +/// +/// ~~~~ +/// 10 | [--****#******----------] | 40 +/// ~~~~ + +pub fn write_boxplot(w: @io::Writer, s: &Summary, width_hint: uint) { + + let (q1,q2,q3) = s.quartiles; + + let lomag = (10.0_f64).pow(&s.min.log10().floor()); + let himag = (10.0_f64).pow(&(s.max.log10().floor())); + let lo = (s.min / lomag).floor() * lomag; + let hi = (s.max / himag).ceil() * himag; + + let range = hi - lo; + + let lostr = lo.to_str(); + let histr = hi.to_str(); + + let overhead_width = lostr.len() + histr.len() + 4; + let range_width = width_hint - overhead_width;; + let char_step = range / (range_width as f64); + + w.write_str(lostr); + w.write_char(' '); + w.write_char('|'); + + let mut c = 0; + let mut v = lo; + + while c < range_width && v < s.min { + w.write_char(' '); + v += char_step; + c += 1; + } + w.write_char('['); + c += 1; + while c < range_width && v < q1 { + w.write_char('-'); + v += char_step; + c += 1; + } + while c < range_width && v < q2 { + w.write_char('*'); + v += char_step; + c += 1; + } + w.write_char('#'); + c += 1; + while c < range_width && v < q3 { + w.write_char('*'); + v += char_step; + c += 1; + } + while c < range_width && v < s.max { + w.write_char('-'); + v += char_step; + c += 1; + } + w.write_char(']'); + while c < range_width { + w.write_char(' '); + v += char_step; + c += 1; + } + + w.write_char('|'); + w.write_char(' '); + w.write_str(histr); +} + +// Test vectors generated from R, using the script src/etc/stat-test-vectors.r. + +#[cfg(test)] +mod tests { + + use stats::Stats; + use stats::Summary; + use stats::write_5_number_summary; + use stats::write_boxplot; + use std::io; + + fn check(samples: &[f64], summ: &Summary) { + + let summ2 = Summary::new(samples); + + let w = io::stdout(); + w.write_char('\n'); + write_5_number_summary(w, &summ2); + w.write_char('\n'); + write_boxplot(w, &summ2, 50); + w.write_char('\n'); + + assert_eq!(summ.sum, summ2.sum); + assert_eq!(summ.min, summ2.min); + assert_eq!(summ.max, summ2.max); + assert_eq!(summ.mean, summ2.mean); + assert_eq!(summ.median, summ2.median); + + // We needed a few more digits to get exact equality on these + // but they're within float epsilon, which is 1.0e-6. + assert_approx_eq!(summ.var, summ2.var); + assert_approx_eq!(summ.std_dev, summ2.std_dev); + assert_approx_eq!(summ.std_dev_pct, summ2.std_dev_pct); + assert_approx_eq!(summ.median_abs_dev, summ2.median_abs_dev); + assert_approx_eq!(summ.median_abs_dev_pct, summ2.median_abs_dev_pct); + + assert_eq!(summ.quartiles, summ2.quartiles); + assert_eq!(summ.iqr, summ2.iqr); + } + + #[test] + fn test_norm2() { + let val = &[ + 958.0000000000, + 924.0000000000, + ]; + let summ = &Summary { + sum: 1882.0000000000, + min: 924.0000000000, + max: 958.0000000000, + mean: 941.0000000000, + median: 941.0000000000, + var: 578.0000000000, + std_dev: 24.0416305603, + std_dev_pct: 2.5549022912, + median_abs_dev: 25.2042000000, + median_abs_dev_pct: 2.6784484591, + quartiles: (932.5000000000,941.0000000000,949.5000000000), + iqr: 17.0000000000, + }; + check(val, summ); + } + #[test] + fn test_norm10narrow() { + let val = &[ + 966.0000000000, + 985.0000000000, + 1110.0000000000, + 848.0000000000, + 821.0000000000, + 975.0000000000, + 962.0000000000, + 1157.0000000000, + 1217.0000000000, + 955.0000000000, + ]; + let summ = &Summary { + sum: 9996.0000000000, + min: 821.0000000000, + max: 1217.0000000000, + mean: 999.6000000000, + median: 970.5000000000, + var: 16050.7111111111, + std_dev: 126.6914010938, + std_dev_pct: 12.6742097933, + median_abs_dev: 102.2994000000, + median_abs_dev_pct: 10.5408964451, + quartiles: (956.7500000000,970.5000000000,1078.7500000000), + iqr: 122.0000000000, + }; + check(val, summ); + } + #[test] + fn test_norm10medium() { + let val = &[ + 954.0000000000, + 1064.0000000000, + 855.0000000000, + 1000.0000000000, + 743.0000000000, + 1084.0000000000, + 704.0000000000, + 1023.0000000000, + 357.0000000000, + 869.0000000000, + ]; + let summ = &Summary { + sum: 8653.0000000000, + min: 357.0000000000, + max: 1084.0000000000, + mean: 865.3000000000, + median: 911.5000000000, + var: 48628.4555555556, + std_dev: 220.5186059170, + std_dev_pct: 25.4846418487, + median_abs_dev: 195.7032000000, + median_abs_dev_pct: 21.4704552935, + quartiles: (771.0000000000,911.5000000000,1017.2500000000), + iqr: 246.2500000000, + }; + check(val, summ); + } + #[test] + fn test_norm10wide() { + let val = &[ + 505.0000000000, + 497.0000000000, + 1591.0000000000, + 887.0000000000, + 1026.0000000000, + 136.0000000000, + 1580.0000000000, + 940.0000000000, + 754.0000000000, + 1433.0000000000, + ]; + let summ = &Summary { + sum: 9349.0000000000, + min: 136.0000000000, + max: 1591.0000000000, + mean: 934.9000000000, + median: 913.5000000000, + var: 239208.9888888889, + std_dev: 489.0899599142, + std_dev_pct: 52.3146817750, + median_abs_dev: 611.5725000000, + median_abs_dev_pct: 66.9482758621, + quartiles: (567.2500000000,913.5000000000,1331.2500000000), + iqr: 764.0000000000, + }; + check(val, summ); + } + #[test] + fn test_norm25verynarrow() { + let val = &[ + 991.0000000000, + 1018.0000000000, + 998.0000000000, + 1013.0000000000, + 974.0000000000, + 1007.0000000000, + 1014.0000000000, + 999.0000000000, + 1011.0000000000, + 978.0000000000, + 985.0000000000, + 999.0000000000, + 983.0000000000, + 982.0000000000, + 1015.0000000000, + 1002.0000000000, + 977.0000000000, + 948.0000000000, + 1040.0000000000, + 974.0000000000, + 996.0000000000, + 989.0000000000, + 1015.0000000000, + 994.0000000000, + 1024.0000000000, + ]; + let summ = &Summary { + sum: 24926.0000000000, + min: 948.0000000000, + max: 1040.0000000000, + mean: 997.0400000000, + median: 998.0000000000, + var: 393.2066666667, + std_dev: 19.8294393937, + std_dev_pct: 1.9888308788, + median_abs_dev: 22.2390000000, + median_abs_dev_pct: 2.2283567134, + quartiles: (983.0000000000,998.0000000000,1013.0000000000), + iqr: 30.0000000000, + }; + check(val, summ); + } + #[test] + fn test_exp10a() { + let val = &[ + 23.0000000000, + 11.0000000000, + 2.0000000000, + 57.0000000000, + 4.0000000000, + 12.0000000000, + 5.0000000000, + 29.0000000000, + 3.0000000000, + 21.0000000000, + ]; + let summ = &Summary { + sum: 167.0000000000, + min: 2.0000000000, + max: 57.0000000000, + mean: 16.7000000000, + median: 11.5000000000, + var: 287.7888888889, + std_dev: 16.9643416875, + std_dev_pct: 101.5828843560, + median_abs_dev: 13.3434000000, + median_abs_dev_pct: 116.0295652174, + quartiles: (4.2500000000,11.5000000000,22.5000000000), + iqr: 18.2500000000, + }; + check(val, summ); + } + #[test] + fn test_exp10b() { + let val = &[ + 24.0000000000, + 17.0000000000, + 6.0000000000, + 38.0000000000, + 25.0000000000, + 7.0000000000, + 51.0000000000, + 2.0000000000, + 61.0000000000, + 32.0000000000, + ]; + let summ = &Summary { + sum: 263.0000000000, + min: 2.0000000000, + max: 61.0000000000, + mean: 26.3000000000, + median: 24.5000000000, + var: 383.5666666667, + std_dev: 19.5848580967, + std_dev_pct: 74.4671410520, + median_abs_dev: 22.9803000000, + median_abs_dev_pct: 93.7971428571, + quartiles: (9.5000000000,24.5000000000,36.5000000000), + iqr: 27.0000000000, + }; + check(val, summ); + } + #[test] + fn test_exp10c() { + let val = &[ + 71.0000000000, + 2.0000000000, + 32.0000000000, + 1.0000000000, + 6.0000000000, + 28.0000000000, + 13.0000000000, + 37.0000000000, + 16.0000000000, + 36.0000000000, + ]; + let summ = &Summary { + sum: 242.0000000000, + min: 1.0000000000, + max: 71.0000000000, + mean: 24.2000000000, + median: 22.0000000000, + var: 458.1777777778, + std_dev: 21.4050876611, + std_dev_pct: 88.4507754589, + median_abs_dev: 21.4977000000, + median_abs_dev_pct: 97.7168181818, + quartiles: (7.7500000000,22.0000000000,35.0000000000), + iqr: 27.2500000000, + }; + check(val, summ); + } + #[test] + fn test_exp25() { + let val = &[ + 3.0000000000, + 24.0000000000, + 1.0000000000, + 19.0000000000, + 7.0000000000, + 5.0000000000, + 30.0000000000, + 39.0000000000, + 31.0000000000, + 13.0000000000, + 25.0000000000, + 48.0000000000, + 1.0000000000, + 6.0000000000, + 42.0000000000, + 63.0000000000, + 2.0000000000, + 12.0000000000, + 108.0000000000, + 26.0000000000, + 1.0000000000, + 7.0000000000, + 44.0000000000, + 25.0000000000, + 11.0000000000, + ]; + let summ = &Summary { + sum: 593.0000000000, + min: 1.0000000000, + max: 108.0000000000, + mean: 23.7200000000, + median: 19.0000000000, + var: 601.0433333333, + std_dev: 24.5161851301, + std_dev_pct: 103.3565983562, + median_abs_dev: 19.2738000000, + median_abs_dev_pct: 101.4410526316, + quartiles: (6.0000000000,19.0000000000,31.0000000000), + iqr: 25.0000000000, + }; + check(val, summ); + } + #[test] + fn test_binom25() { + let val = &[ + 18.0000000000, + 17.0000000000, + 27.0000000000, + 15.0000000000, + 21.0000000000, + 25.0000000000, + 17.0000000000, + 24.0000000000, + 25.0000000000, + 24.0000000000, + 26.0000000000, + 26.0000000000, + 23.0000000000, + 15.0000000000, + 23.0000000000, + 17.0000000000, + 18.0000000000, + 18.0000000000, + 21.0000000000, + 16.0000000000, + 15.0000000000, + 31.0000000000, + 20.0000000000, + 17.0000000000, + 15.0000000000, + ]; + let summ = &Summary { + sum: 514.0000000000, + min: 15.0000000000, + max: 31.0000000000, + mean: 20.5600000000, + median: 20.0000000000, + var: 20.8400000000, + std_dev: 4.5650848842, + std_dev_pct: 22.2037202539, + median_abs_dev: 5.9304000000, + median_abs_dev_pct: 29.6520000000, + quartiles: (17.0000000000,20.0000000000,24.0000000000), + iqr: 7.0000000000, + }; + check(val, summ); + } + #[test] + fn test_pois25lambda30() { + let val = &[ + 27.0000000000, + 33.0000000000, + 34.0000000000, + 34.0000000000, + 24.0000000000, + 39.0000000000, + 28.0000000000, + 27.0000000000, + 31.0000000000, + 28.0000000000, + 38.0000000000, + 21.0000000000, + 33.0000000000, + 36.0000000000, + 29.0000000000, + 37.0000000000, + 32.0000000000, + 34.0000000000, + 31.0000000000, + 39.0000000000, + 25.0000000000, + 31.0000000000, + 32.0000000000, + 40.0000000000, + 24.0000000000, + ]; + let summ = &Summary { + sum: 787.0000000000, + min: 21.0000000000, + max: 40.0000000000, + mean: 31.4800000000, + median: 32.0000000000, + var: 26.5933333333, + std_dev: 5.1568724372, + std_dev_pct: 16.3814245145, + median_abs_dev: 5.9304000000, + median_abs_dev_pct: 18.5325000000, + quartiles: (28.0000000000,32.0000000000,34.0000000000), + iqr: 6.0000000000, + }; + check(val, summ); + } + #[test] + fn test_pois25lambda40() { + let val = &[ + 42.0000000000, + 50.0000000000, + 42.0000000000, + 46.0000000000, + 34.0000000000, + 45.0000000000, + 34.0000000000, + 49.0000000000, + 39.0000000000, + 28.0000000000, + 40.0000000000, + 35.0000000000, + 37.0000000000, + 39.0000000000, + 46.0000000000, + 44.0000000000, + 32.0000000000, + 45.0000000000, + 42.0000000000, + 37.0000000000, + 48.0000000000, + 42.0000000000, + 33.0000000000, + 42.0000000000, + 48.0000000000, + ]; + let summ = &Summary { + sum: 1019.0000000000, + min: 28.0000000000, + max: 50.0000000000, + mean: 40.7600000000, + median: 42.0000000000, + var: 34.4400000000, + std_dev: 5.8685603004, + std_dev_pct: 14.3978417577, + median_abs_dev: 5.9304000000, + median_abs_dev_pct: 14.1200000000, + quartiles: (37.0000000000,42.0000000000,45.0000000000), + iqr: 8.0000000000, + }; + check(val, summ); + } + #[test] + fn test_pois25lambda50() { + let val = &[ + 45.0000000000, + 43.0000000000, + 44.0000000000, + 61.0000000000, + 51.0000000000, + 53.0000000000, + 59.0000000000, + 52.0000000000, + 49.0000000000, + 51.0000000000, + 51.0000000000, + 50.0000000000, + 49.0000000000, + 56.0000000000, + 42.0000000000, + 52.0000000000, + 51.0000000000, + 43.0000000000, + 48.0000000000, + 48.0000000000, + 50.0000000000, + 42.0000000000, + 43.0000000000, + 42.0000000000, + 60.0000000000, + ]; + let summ = &Summary { + sum: 1235.0000000000, + min: 42.0000000000, + max: 61.0000000000, + mean: 49.4000000000, + median: 50.0000000000, + var: 31.6666666667, + std_dev: 5.6273143387, + std_dev_pct: 11.3913245723, + median_abs_dev: 4.4478000000, + median_abs_dev_pct: 8.8956000000, + quartiles: (44.0000000000,50.0000000000,52.0000000000), + iqr: 8.0000000000, + }; + check(val, summ); + } + #[test] + fn test_unif25() { + let val = &[ + 99.0000000000, + 55.0000000000, + 92.0000000000, + 79.0000000000, + 14.0000000000, + 2.0000000000, + 33.0000000000, + 49.0000000000, + 3.0000000000, + 32.0000000000, + 84.0000000000, + 59.0000000000, + 22.0000000000, + 86.0000000000, + 76.0000000000, + 31.0000000000, + 29.0000000000, + 11.0000000000, + 41.0000000000, + 53.0000000000, + 45.0000000000, + 44.0000000000, + 98.0000000000, + 98.0000000000, + 7.0000000000, + ]; + let summ = &Summary { + sum: 1242.0000000000, + min: 2.0000000000, + max: 99.0000000000, + mean: 49.6800000000, + median: 45.0000000000, + var: 1015.6433333333, + std_dev: 31.8691595957, + std_dev_pct: 64.1488719719, + median_abs_dev: 45.9606000000, + median_abs_dev_pct: 102.1346666667, + quartiles: (29.0000000000,45.0000000000,79.0000000000), + iqr: 50.0000000000, + }; + check(val, summ); + } }