Bypass the varint path when encoding InitMask

This commit is contained in:
Ben Kimock 2023-04-14 19:55:25 -04:00
parent a41fc00eaf
commit 69279c0584

View File

@ -5,7 +5,9 @@ use std::hash;
use std::iter;
use std::ops::Range;
use rustc_serialize::{Decodable, Encodable};
use rustc_target::abi::Size;
use rustc_type_ir::{TyDecoder, TyEncoder};
use super::AllocRange;
@ -182,11 +184,39 @@ impl InitMask {
/// The actual materialized blocks of the bitmask, when we can't keep the `InitMask` lazy.
// Note: for performance reasons when interning, some of the fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, HashStable)]
#[derive(Clone, Debug, Eq, PartialEq, HashStable)]
struct InitMaskMaterialized {
blocks: Vec<Block>,
}
// `Block` is a `u64`, but it is a bitmask not a numeric value. If we were to just derive
// Encodable and Decodable we would apply varint encoding to the bitmasks, which is slower
// and also produces more output when the high bits of each `u64` are occupied.
// Note: There is probably a remaining optimization for masks that do not use an entire
// `Block`.
impl<E: TyEncoder> Encodable<E> for InitMaskMaterialized {
fn encode(&self, encoder: &mut E) {
encoder.emit_usize(self.blocks.len());
for block in &self.blocks {
encoder.emit_raw_bytes(&block.to_le_bytes());
}
}
}
// This implementation is deliberately not derived, see the matching `Encodable` impl.
impl<D: TyDecoder> Decodable<D> for InitMaskMaterialized {
fn decode(decoder: &mut D) -> Self {
let num_blocks = decoder.read_usize();
let mut blocks = Vec::with_capacity(num_blocks);
for _ in 0..num_blocks {
let bytes = decoder.read_raw_bytes(8);
let block = u64::from_le_bytes(bytes.try_into().unwrap());
blocks.push(block);
}
InitMaskMaterialized { blocks }
}
}
// Const allocations are only hashed for interning. However, they can be large, making the hashing
// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
// big buffers like the allocation's init mask. We can partially hash some fields when they're