Stop using identity args for opaque type wf checks and instead load the args from the single use of a RPIT in its parent function's return type

This commit is contained in:
Oli Scherer 2023-08-07 08:33:25 +00:00 committed by Michael Goulet
parent 420ee167a8
commit 67703b9161
2 changed files with 134 additions and 78 deletions

View File

@ -13,7 +13,7 @@
use rustc_hir::{ItemKind, Node, PathSegment};
use rustc_infer::infer::opaque_types::ConstrainOpaqueTypeRegionVisitor;
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{RegionVariableOrigin, TyCtxtInferExt};
use rustc_infer::infer::{LateBoundRegionConversionTime, RegionVariableOrigin, TyCtxtInferExt};
use rustc_infer::traits::{Obligation, TraitEngineExt as _};
use rustc_lint_defs::builtin::REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS;
use rustc_middle::hir::nested_filter;
@ -407,7 +407,38 @@ fn check_opaque_meets_bounds<'tcx>(
.build();
let ocx = ObligationCtxt::new(&infcx);
let args = GenericArgs::identity_for_item(tcx, def_id.to_def_id());
let mut args = GenericArgs::identity_for_item(tcx, def_id.to_def_id());
assert!(!args.has_escaping_bound_vars(), "{args:#?}");
if let hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) = origin {
// Find use of the RPIT in the function signature and thus find the right args to
// convert it into the parameter space of the function signature. This is needed,
// because that's what `type_of` returns, against which we compare later.
let ret = tcx.fn_sig(defining_use_anchor).instantiate_identity().output();
let a = ret
.skip_binder()
.visit_with(&mut FindOpaqueTypeArgs {
tcx,
opaque: def_id.to_def_id(),
fn_def_id: defining_use_anchor.to_def_id(),
seen: Default::default(),
depth: ty::INNERMOST,
})
.break_value()
.ok_or_else(|| {
tcx.sess.delay_span_bug(
tcx.def_span(defining_use_anchor),
format!("return type of {defining_use_anchor:?} does not contain {def_id:?}"),
)
})?;
let a = infcx.instantiate_binder_with_fresh_vars(
span,
LateBoundRegionConversionTime::HigherRankedType,
ret.rebind(a),
);
assert!(!a.has_escaping_bound_vars(), "{a:#?}");
args = ty::EarlyBinder::bind(args).instantiate(tcx, a);
}
let opaque_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args);
// `ReErased` regions appear in the "parent_args" of closures/generators.
@ -468,9 +499,10 @@ fn check_opaque_meets_bounds<'tcx>(
}
}
// Check that any hidden types found during wf checking match the hidden types that `type_of` sees.
for (key, mut ty) in infcx.take_opaque_types() {
for (mut key, mut ty) in infcx.take_opaque_types() {
ty.hidden_type.ty = infcx.resolve_vars_if_possible(ty.hidden_type.ty);
sanity_check_found_hidden_type(tcx, key, ty.hidden_type, defining_use_anchor, origin)?;
key = infcx.resolve_vars_if_possible(key);
sanity_check_found_hidden_type(tcx, key, ty.hidden_type)?;
}
Ok(())
}
@ -479,8 +511,6 @@ fn sanity_check_found_hidden_type<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::OpaqueTypeKey<'tcx>,
mut ty: ty::OpaqueHiddenType<'tcx>,
defining_use_anchor: LocalDefId,
origin: &hir::OpaqueTyOrigin,
) -> Result<(), ErrorGuaranteed> {
if ty.ty.is_ty_var() {
// Nothing was actually constrained.
@ -493,29 +523,23 @@ fn sanity_check_found_hidden_type<'tcx>(
return Ok(());
}
}
let strip_vars = |ty: Ty<'tcx>| {
ty.fold_with(&mut BottomUpFolder {
tcx,
ty_op: |t| t,
ct_op: |c| c,
lt_op: |l| match l.kind() {
RegionKind::ReVar(_) => tcx.lifetimes.re_erased,
_ => l,
},
})
};
// Closures frequently end up containing erased lifetimes in their final representation.
// These correspond to lifetime variables that never got resolved, so we patch this up here.
ty.ty = ty.ty.fold_with(&mut BottomUpFolder {
tcx,
ty_op: |t| t,
ct_op: |c| c,
lt_op: |l| match l.kind() {
RegionKind::ReVar(_) => tcx.lifetimes.re_erased,
_ => l,
},
});
ty.ty = strip_vars(ty.ty);
// Get the hidden type.
let mut hidden_ty = tcx.type_of(key.def_id).instantiate(tcx, key.args);
if let hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) = origin {
if hidden_ty != ty.ty {
hidden_ty = find_and_apply_rpit_args(
tcx,
hidden_ty,
defining_use_anchor.to_def_id(),
key.def_id.to_def_id(),
)?;
}
}
let hidden_ty = tcx.type_of(key.def_id).instantiate(tcx, key.args);
let hidden_ty = strip_vars(hidden_ty);
// If the hidden types differ, emit a type mismatch diagnostic.
if hidden_ty == ty.ty {
@ -563,67 +587,80 @@ fn sanity_check_found_hidden_type<'tcx>(
/// x
/// }
/// ```
fn find_and_apply_rpit_args<'tcx>(
struct FindOpaqueTypeArgs<'tcx> {
tcx: TyCtxt<'tcx>,
mut hidden_ty: Ty<'tcx>,
function: DefId,
opaque: DefId,
) -> Result<Ty<'tcx>, ErrorGuaranteed> {
// Find use of the RPIT in the function signature and thus find the right args to
// convert it into the parameter space of the function signature. This is needed,
// because that's what `type_of` returns, against which we compare later.
let ret = tcx.fn_sig(function).instantiate_identity().output();
struct Visitor<'tcx> {
tcx: TyCtxt<'tcx>,
opaque: DefId,
seen: FxHashSet<DefId>,
}
impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for Visitor<'tcx> {
type BreakTy = GenericArgsRef<'tcx>;
seen: FxHashSet<DefId>,
fn_def_id: DefId,
depth: ty::DebruijnIndex,
}
impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for FindOpaqueTypeArgs<'tcx> {
type BreakTy = GenericArgsRef<'tcx>;
#[instrument(level = "trace", skip(self), ret)]
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
trace!("{:#?}", t.kind());
match t.kind() {
ty::Alias(ty::Opaque, alias) => {
trace!(?alias.def_id);
if alias.def_id == self.opaque {
return ControlFlow::Break(alias.args);
} else if self.seen.insert(alias.def_id) {
for clause in self
.tcx
.explicit_item_bounds(alias.def_id)
.iter_instantiated_copied(self.tcx, alias.args)
{
trace!(?clause);
clause.visit_with(self)?;
#[instrument(level = "trace", skip(self), ret)]
fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(
&mut self,
t: &ty::Binder<'tcx, T>,
) -> ControlFlow<Self::BreakTy> {
self.depth.shift_in(1);
let binder = t.super_visit_with(self);
self.depth.shift_out(1);
binder
}
#[instrument(level = "trace", skip(self), ret)]
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
trace!("{:#?}", t.kind());
match t.kind() {
ty::Alias(ty::Opaque, alias) => {
trace!(?alias.def_id);
if alias.def_id == self.opaque {
let args = self.tcx.fold_regions(alias.args, |re, depth| {
if let ty::ReLateBound(index, bv) = re.kind() {
if depth != ty::INNERMOST {
return ty::Region::new_error_with_message(
self.tcx,
self.tcx.def_span(self.opaque),
"opaque type behind meaningful binders are not supported yet",
);
}
ty::Region::new_late_bound(
self.tcx,
index.shifted_out_to_binder(self.depth),
bv,
)
} else {
re
}
});
return ControlFlow::Break(args);
} else if self.seen.insert(alias.def_id) {
for clause in self
.tcx
.explicit_item_bounds(alias.def_id)
.iter_instantiated_copied(self.tcx, alias.args)
{
trace!(?clause);
clause.visit_with(self)?;
}
}
ty::Alias(ty::Weak, alias) => {
self.tcx
.type_of(alias.def_id)
.instantiate(self.tcx, alias.args)
.visit_with(self)?;
}
_ => (),
}
t.super_visit_with(self)
ty::Alias(ty::Projection, alias) => {
if let Some(ty::ImplTraitInTraitData::Trait { fn_def_id, .. }) = self.tcx.opt_rpitit_info(alias.def_id) && fn_def_id == self.fn_def_id {
self.tcx.type_of(alias.def_id).instantiate(self.tcx, alias.args).visit_with(self)?;
}
}
ty::Alias(ty::Weak, alias) => {
self.tcx
.type_of(alias.def_id)
.instantiate(self.tcx, alias.args)
.visit_with(self)?;
}
_ => (),
}
t.super_visit_with(self)
}
if let ControlFlow::Break(args) =
ret.visit_with(&mut Visitor { tcx, opaque, seen: Default::default() })
{
trace!(?args);
trace!("expected: {hidden_ty:#?}");
hidden_ty = ty::EarlyBinder::bind(hidden_ty).instantiate(tcx, args);
trace!("expected: {hidden_ty:#?}");
} else {
tcx.sess
.delay_span_bug(tcx.def_span(function), format!("{ret:?} does not contain {opaque:?}"));
}
Ok(hidden_ty)
}
fn is_enum_of_nonnullable_ptr<'tcx>(

View File

@ -0,0 +1,19 @@
//check-pass
pub struct Key;
#[derive(Clone)]
pub struct Value;
use std::collections::HashMap;
pub struct DiagnosticBuilder<'db> {
inner: HashMap<&'db Key, Vec<&'db Value>>,
}
impl<'db> DiagnosticBuilder<'db> {
pub fn iter<'a>(&'a self) -> impl Iterator<Item = (&'db Key, impl Iterator<Item = &'a Value>)> {
self.inner.iter().map(|(key, values)| (*key, values.iter().map(|v| *v)))
}
}
fn main() {}