Check for all-positive or all-negative sums
This commit is contained in:
parent
1cbb58bd06
commit
6670acd287
@ -1,3 +1,4 @@
|
||||
use std::convert::Infallible;
|
||||
use std::ops::ControlFlow;
|
||||
|
||||
use clippy_utils::consts::{constant, Constant};
|
||||
@ -63,11 +64,14 @@ fn should_lint<'cx>(cx: &LateContext<'cx>, cast_op: &Expr<'_>, cast_from: Ty<'cx
|
||||
return false;
|
||||
}
|
||||
|
||||
// We don't check for sums of all-positive or all-negative values, but we could.
|
||||
if let Sign::ZeroOrPositive = expr_muldiv_sign(cx, cast_op) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if let Sign::ZeroOrPositive = expr_add_sign(cx, cast_op) {
|
||||
return false;
|
||||
}
|
||||
|
||||
true
|
||||
},
|
||||
|
||||
@ -182,13 +186,13 @@ fn pow_call_result_sign(cx: &LateContext<'_>, base: &Expr<'_>, exponent: &Expr<'
|
||||
}
|
||||
}
|
||||
|
||||
/// Peels binary operators such as [`BinOpKind::Mul`], [`BinOpKind::Div`] or [`BinOpKind::Rem`],
|
||||
/// which the result could always be positive under certain conditions, ignoring overflow.
|
||||
/// Peels binary operators such as [`BinOpKind::Mul`] or [`BinOpKind::Rem`],
|
||||
/// where the result could always be positive. See [`exprs_with_muldiv_binop_peeled()`] for details.
|
||||
///
|
||||
/// Returns the sign of the list of peeled expressions.
|
||||
fn expr_muldiv_sign(cx: &LateContext<'_>, expr: &Expr<'_>) -> Sign {
|
||||
let mut uncertain_count = 0;
|
||||
let mut negative_count = 0;
|
||||
let mut uncertain_count = 0;
|
||||
|
||||
// Peel off possible binary expressions, for example:
|
||||
// x * x / y => [x, x, y]
|
||||
@ -215,18 +219,58 @@ fn expr_muldiv_sign(cx: &LateContext<'_>, expr: &Expr<'_>) -> Sign {
|
||||
}
|
||||
}
|
||||
|
||||
/// Peels binary operators such as [`BinOpKind::Add`], where the result could always be positive.
|
||||
/// See [`exprs_with_add_binop_peeled()`] for details.
|
||||
///
|
||||
/// Returns the sign of the list of peeled expressions.
|
||||
fn expr_add_sign(cx: &LateContext<'_>, expr: &Expr<'_>) -> Sign {
|
||||
let mut negative_count = 0;
|
||||
let mut uncertain_count = 0;
|
||||
let mut positive_count = 0;
|
||||
|
||||
// Peel off possible binary expressions, for example:
|
||||
// a + b + c => [a, b, c]
|
||||
let exprs = exprs_with_add_binop_peeled(expr);
|
||||
for expr in exprs {
|
||||
match expr_sign(cx, expr, None) {
|
||||
Sign::Negative => negative_count += 1,
|
||||
Sign::Uncertain => uncertain_count += 1,
|
||||
Sign::ZeroOrPositive => positive_count += 1,
|
||||
};
|
||||
}
|
||||
|
||||
// A sum is:
|
||||
// - uncertain if there are any uncertain values (because they could be negative or positive),
|
||||
// - positive or zero if there are only positive (or zero) values,
|
||||
// - negative if there are only negative (or zero) values.
|
||||
// We could split Zero out into its own variant, but we don't yet.
|
||||
if uncertain_count > 0 {
|
||||
Sign::Uncertain
|
||||
} else if negative_count == 0 {
|
||||
Sign::ZeroOrPositive
|
||||
} else if positive_count == 0 {
|
||||
Sign::Negative
|
||||
} else {
|
||||
Sign::Uncertain
|
||||
}
|
||||
}
|
||||
|
||||
/// Peels binary operators such as [`BinOpKind::Mul`], [`BinOpKind::Div`] or [`BinOpKind::Rem`],
|
||||
/// which the result could always be positive under certain conditions, ignoring overflow.
|
||||
/// where the result depends on:
|
||||
/// - the number of negative values in the entire expression, or
|
||||
/// - the number of negative values on the left hand side of the expression.
|
||||
/// Ignores overflow.
|
||||
///
|
||||
///
|
||||
/// Expressions using other operators are preserved, so we can try to evaluate them later.
|
||||
fn exprs_with_muldiv_binop_peeled<'e>(expr: &'e Expr<'_>) -> Vec<&'e Expr<'e>> {
|
||||
let mut res = vec![];
|
||||
|
||||
for_each_expr(expr, |sub_expr| {
|
||||
for_each_expr(expr, |sub_expr| -> ControlFlow<Infallible, Descend> {
|
||||
// We don't check for mul/div/rem methods here, but we could.
|
||||
if let ExprKind::Binary(op, lhs, _rhs) = sub_expr.kind {
|
||||
if matches!(op.node, BinOpKind::Mul | BinOpKind::Div) {
|
||||
// For binary operators which both contribute to the sign of the result,
|
||||
// For binary operators where both sides contribute to the sign of the result,
|
||||
// collect all their operands, recursively. This ignores overflow.
|
||||
ControlFlow::Continue(Descend::Yes)
|
||||
} else if matches!(op.node, BinOpKind::Rem | BinOpKind::Shr) {
|
||||
@ -259,3 +303,35 @@ fn exprs_with_muldiv_binop_peeled<'e>(expr: &'e Expr<'_>) -> Vec<&'e Expr<'e>> {
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
/// Peels binary operators such as [`BinOpKind::Add`], where the result depends on:
|
||||
/// - all the expressions being positive, or
|
||||
/// - all the expressions being negative.
|
||||
/// Ignores overflow.
|
||||
///
|
||||
/// Expressions using other operators are preserved, so we can try to evaluate them later.
|
||||
fn exprs_with_add_binop_peeled<'e>(expr: &'e Expr<'_>) -> Vec<&'e Expr<'e>> {
|
||||
let mut res = vec![];
|
||||
|
||||
for_each_expr(expr, |sub_expr| -> ControlFlow<Infallible, Descend> {
|
||||
// We don't check for add methods here, but we could.
|
||||
if let ExprKind::Binary(op, _lhs, _rhs) = sub_expr.kind {
|
||||
if matches!(op.node, BinOpKind::Add) {
|
||||
// For binary operators where both sides contribute to the sign of the result,
|
||||
// collect all their operands, recursively. This ignores overflow.
|
||||
ControlFlow::Continue(Descend::Yes)
|
||||
} else {
|
||||
// The sign of the result of other binary operators depends on the values of the operands,
|
||||
// so try to evaluate the expression.
|
||||
res.push(sub_expr);
|
||||
ControlFlow::Continue(Descend::No)
|
||||
}
|
||||
} else {
|
||||
// For other expressions, including unary operators and constants, try to evaluate the expression.
|
||||
res.push(sub_expr);
|
||||
ControlFlow::Continue(Descend::No)
|
||||
}
|
||||
});
|
||||
|
||||
res
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user