Auto merge of #12177 - y21:issue12154, r=Jarcho

[`unconditional_recursion`]: compare by `Ty`s instead of `DefId`s

Fixes #12154
Fixes #12181 (this was later edited in, so the rest of the description refers to the first linked issue)

Before this change, the lint would work with `DefId`s and use those to compare types. This PR changes it to compare types directly. It fixes the linked issue, but also other false positives I found in a lintcheck run. For example, one of the issues is that some types don't have `DefId`s (primitives, references, etc., leading to possible FNs), and the helper function used to extract a `DefId` didn't handle type parameters.

Another issue was that the lint would use `.peel_refs()` in a few places where that could lead to false positives (one such FP was in the `http` crate). See the doc comment on one of the added functions and also the test case for what I mean.

The code in the linked issue was linted because the receiver type is `T` (a `ty::Param`), which was not handled in `get_ty_def_id` and returned `None`, so this wouldn't actually *get* to comparing `self_arg != ty_id` here, and skip the early-return:
70573af31e/clippy_lints/src/unconditional_recursion.rs (L171-L178)

This alone could be fixed by doing something like `&& get_ty_def_id(ty).map_or(true, |ty_id)| self_arg != ty_id)`, but we don't really need to work with `DefId`s in the first place, I don't think.

changelog: [`unconditional_recursion`]: avoid linting when the other comparison type is a type parameter
This commit is contained in:
bors 2024-02-07 16:18:33 +00:00
commit 62dcbd672b
2 changed files with 106 additions and 39 deletions

View File

@ -69,14 +69,6 @@ fn span_error(cx: &LateContext<'_>, method_span: Span, expr: &Expr<'_>) {
); );
} }
fn get_ty_def_id(ty: Ty<'_>) -> Option<DefId> {
match ty.peel_refs().kind() {
ty::Adt(adt, _) => Some(adt.did()),
ty::Foreign(def_id) => Some(*def_id),
_ => None,
}
}
fn get_hir_ty_def_id<'tcx>(tcx: TyCtxt<'tcx>, hir_ty: rustc_hir::Ty<'tcx>) -> Option<DefId> { fn get_hir_ty_def_id<'tcx>(tcx: TyCtxt<'tcx>, hir_ty: rustc_hir::Ty<'tcx>) -> Option<DefId> {
let TyKind::Path(qpath) = hir_ty.kind else { return None }; let TyKind::Path(qpath) = hir_ty.kind else { return None };
match qpath { match qpath {
@ -131,21 +123,49 @@ fn get_impl_trait_def_id(cx: &LateContext<'_>, method_def_id: LocalDefId) -> Opt
} }
} }
#[allow(clippy::unnecessary_def_path)] /// When we have `x == y` where `x = &T` and `y = &T`, then that resolves to
/// `<&T as PartialEq<&T>>::eq`, which is not the same as `<T as PartialEq<T>>::eq`,
/// however we still would want to treat it the same, because we know that it's a blanket impl
/// that simply delegates to the `PartialEq` impl with one reference removed.
///
/// Still, we can't just do `lty.peel_refs() == rty.peel_refs()` because when we have `x = &T` and
/// `y = &&T`, this is not necessarily the same as `<T as PartialEq<T>>::eq`
///
/// So to avoid these FNs and FPs, we keep removing a layer of references from *both* sides
/// until both sides match the expected LHS and RHS type (or they don't).
fn matches_ty<'tcx>(
mut left: Ty<'tcx>,
mut right: Ty<'tcx>,
expected_left: Ty<'tcx>,
expected_right: Ty<'tcx>,
) -> bool {
while let (&ty::Ref(_, lty, _), &ty::Ref(_, rty, _)) = (left.kind(), right.kind()) {
if lty == expected_left && rty == expected_right {
return true;
}
left = lty;
right = rty;
}
false
}
fn check_partial_eq(cx: &LateContext<'_>, method_span: Span, method_def_id: LocalDefId, name: Ident, expr: &Expr<'_>) { fn check_partial_eq(cx: &LateContext<'_>, method_span: Span, method_def_id: LocalDefId, name: Ident, expr: &Expr<'_>) {
let args = cx let Some(sig) = cx
.tcx .typeck_results()
.instantiate_bound_regions_with_erased(cx.tcx.fn_sig(method_def_id).skip_binder()) .liberated_fn_sigs()
.inputs(); .get(cx.tcx.local_def_id_to_hir_id(method_def_id))
else {
return;
};
// That has two arguments. // That has two arguments.
if let [self_arg, other_arg] = args if let [self_arg, other_arg] = sig.inputs()
&& let Some(self_arg) = get_ty_def_id(*self_arg) && let &ty::Ref(_, self_arg, _) = self_arg.kind()
&& let Some(other_arg) = get_ty_def_id(*other_arg) && let &ty::Ref(_, other_arg, _) = other_arg.kind()
// The two arguments are of the same type. // The two arguments are of the same type.
&& self_arg == other_arg
&& let Some(trait_def_id) = get_impl_trait_def_id(cx, method_def_id) && let Some(trait_def_id) = get_impl_trait_def_id(cx, method_def_id)
// The trait is `PartialEq`. // The trait is `PartialEq`.
&& Some(trait_def_id) == get_trait_def_id(cx, &["core", "cmp", "PartialEq"]) && cx.tcx.is_diagnostic_item(sym::PartialEq, trait_def_id)
{ {
let to_check_op = if name.name == sym::eq { let to_check_op = if name.name == sym::eq {
BinOpKind::Eq BinOpKind::Eq
@ -154,31 +174,19 @@ fn check_partial_eq(cx: &LateContext<'_>, method_span: Span, method_def_id: Loca
}; };
let is_bad = match expr.kind { let is_bad = match expr.kind {
ExprKind::Binary(op, left, right) if op.node == to_check_op => { ExprKind::Binary(op, left, right) if op.node == to_check_op => {
// Then we check if the left-hand element is of the same type as `self`. // Then we check if the LHS matches self_arg and RHS matches other_arg
if let Some(left_ty) = cx.typeck_results().expr_ty_opt(left) let left_ty = cx.typeck_results().expr_ty_adjusted(left);
&& let Some(left_id) = get_ty_def_id(left_ty) let right_ty = cx.typeck_results().expr_ty_adjusted(right);
&& self_arg == left_id matches_ty(left_ty, right_ty, self_arg, other_arg)
&& let Some(right_ty) = cx.typeck_results().expr_ty_opt(right)
&& let Some(right_id) = get_ty_def_id(right_ty)
&& other_arg == right_id
{
true
} else {
false
}
}, },
ExprKind::MethodCall(segment, receiver, &[_arg], _) if segment.ident.name == name.name => { ExprKind::MethodCall(segment, receiver, [arg], _) if segment.ident.name == name.name => {
if let Some(ty) = cx.typeck_results().expr_ty_opt(receiver) let receiver_ty = cx.typeck_results().expr_ty_adjusted(receiver);
&& let Some(ty_id) = get_ty_def_id(ty) let arg_ty = cx.typeck_results().expr_ty_adjusted(arg);
&& self_arg != ty_id
{
// Since this called on a different type, the lint should not be
// triggered here.
return;
}
if let Some(fn_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) if let Some(fn_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
&& let Some(trait_id) = cx.tcx.trait_of_item(fn_id) && let Some(trait_id) = cx.tcx.trait_of_item(fn_id)
&& trait_id == trait_def_id && trait_id == trait_def_id
&& matches_ty(receiver_ty, arg_ty, self_arg, other_arg)
{ {
true true
} else { } else {

View File

@ -291,4 +291,63 @@ impl PartialEq for S15<'_> {
} }
} }
mod issue12154 {
struct MyBox<T>(T);
impl<T> std::ops::Deref for MyBox<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
impl<T: PartialEq> PartialEq for MyBox<T> {
fn eq(&self, other: &Self) -> bool {
(**self).eq(&**other)
}
}
// Not necessarily related to the issue but another FP from the http crate that was fixed with it:
// https://docs.rs/http/latest/src/http/header/name.rs.html#1424
// We used to simply peel refs from the LHS and RHS, so we couldn't differentiate
// between `PartialEq<T> for &T` and `PartialEq<&T> for T` impls.
#[derive(PartialEq)]
struct HeaderName;
impl<'a> PartialEq<&'a HeaderName> for HeaderName {
fn eq(&self, other: &&'a HeaderName) -> bool {
*self == **other
}
}
impl<'a> PartialEq<HeaderName> for &'a HeaderName {
fn eq(&self, other: &HeaderName) -> bool {
*other == *self
}
}
// Issue #12181 but also fixed by the same PR
struct Foo;
impl Foo {
fn as_str(&self) -> &str {
"Foo"
}
}
impl PartialEq for Foo {
fn eq(&self, other: &Self) -> bool {
self.as_str().eq(other.as_str())
}
}
impl<T> PartialEq<T> for Foo
where
for<'a> &'a str: PartialEq<T>,
{
fn eq(&self, other: &T) -> bool {
(&self.as_str()).eq(other)
}
}
}
fn main() {} fn main() {}