Rollup merge of #66330 - Nadrieril:nonexhaustive-constructor, r=varkor

Improve non-exhaustiveness handling in usefulness checking

The comments around code paths for the `non_exhaustive` feature mention stuff like "we act as if the type had an extra unmatcheable constructor". So I thought I'd make this explicit by defining a special constructor that does exactly this.
This makes those code paths a bit more legible and less prone to error.
This commit is contained in:
Yuki Okushi 2019-11-13 22:09:25 +09:00 committed by GitHub
commit 60ba5c70fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -560,13 +560,6 @@ impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
}
}
fn is_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
match ty.kind {
ty::Adt(adt_def, ..) => adt_def.is_variant_list_non_exhaustive(),
_ => false,
}
}
fn is_local(&self, ty: Ty<'tcx>) -> bool {
match ty.kind {
ty::Adt(adt_def, ..) => adt_def.did.is_local(),
@ -590,6 +583,8 @@ enum Constructor<'tcx> {
FixedLenSlice(u64),
/// Slice patterns. Captures any array constructor of `length >= i + j`.
VarLenSlice(u64, u64),
/// Fake extra constructor for enums that aren't allowed to be matched exhaustively.
NonExhaustive,
}
// Ignore spans when comparing, they don't carry semantic information as they are only for lints.
@ -597,6 +592,7 @@ impl<'tcx> std::cmp::PartialEq for Constructor<'tcx> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Constructor::Single, Constructor::Single) => true,
(Constructor::NonExhaustive, Constructor::NonExhaustive) => true,
(Constructor::Variant(a), Constructor::Variant(b)) => a == b,
(Constructor::ConstantValue(a, _), Constructor::ConstantValue(b, _)) => a == b,
(
@ -771,6 +767,8 @@ impl<'tcx> Constructor<'tcx> {
// ranges have been omitted.
remaining_ctors
}
// This constructor is never covered by anything else
NonExhaustive => vec![NonExhaustive],
}
}
@ -781,65 +779,68 @@ impl<'tcx> Constructor<'tcx> {
ty: Ty<'tcx>,
) -> Vec<Pat<'tcx>> {
debug!("wildcard_subpatterns({:#?}, {:?})", self, ty);
match ty.kind {
ty::Tuple(ref fs) => {
fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect()
}
ty::Slice(ty) | ty::Array(ty, _) => match *self {
FixedLenSlice(length) => (0..length).map(|_| Pat::wildcard_from_ty(ty)).collect(),
VarLenSlice(prefix, suffix) => {
(0..prefix + suffix).map(|_| Pat::wildcard_from_ty(ty)).collect()
match self {
Single | Variant(_) => match ty.kind {
ty::Tuple(ref fs) => {
fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect()
}
ConstantValue(..) => vec![],
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)],
ty::Adt(adt, substs) => {
if adt.is_box() {
// Use T as the sub pattern type of Box<T>.
vec![Pat::wildcard_from_ty(substs.type_at(0))]
} else {
let variant = &adt.variants[self.variant_index_for_adt(cx, adt)];
let is_non_exhaustive =
variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
variant
.fields
.iter()
.map(|field| {
let is_visible =
adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
match (is_visible, is_non_exhaustive, is_uninhabited) {
// Treat all uninhabited types in non-exhaustive variants as
// `TyErr`.
(_, true, true) => cx.tcx.types.err,
// Treat all non-visible fields as `TyErr`. They can't appear in
// any other pattern from this match (because they are private), so
// their type does not matter - but we don't want to know they are
// uninhabited.
(false, ..) => cx.tcx.types.err,
(true, ..) => {
let ty = field.ty(cx.tcx, substs);
match ty.kind {
// If the field type returned is an array of an unknown
// size return an TyErr.
ty::Array(_, len)
if len
.try_eval_usize(cx.tcx, cx.param_env)
.is_none() =>
{
cx.tcx.types.err
ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)],
ty::Adt(adt, substs) => {
if adt.is_box() {
// Use T as the sub pattern type of Box<T>.
vec![Pat::wildcard_from_ty(substs.type_at(0))]
} else {
let variant = &adt.variants[self.variant_index_for_adt(cx, adt)];
let is_non_exhaustive =
variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
variant
.fields
.iter()
.map(|field| {
let is_visible = adt.is_enum()
|| field.vis.is_accessible_from(cx.module, cx.tcx);
let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
match (is_visible, is_non_exhaustive, is_uninhabited) {
// Treat all uninhabited types in non-exhaustive variants as
// `TyErr`.
(_, true, true) => cx.tcx.types.err,
// Treat all non-visible fields as `TyErr`. They can't appear
// in any other pattern from this match (because they are
// private), so their type does not matter - but we don't want
// to know they are uninhabited.
(false, ..) => cx.tcx.types.err,
(true, ..) => {
let ty = field.ty(cx.tcx, substs);
match ty.kind {
// If the field type returned is an array of an unknown
// size return an TyErr.
ty::Array(_, len)
if len
.try_eval_usize(cx.tcx, cx.param_env)
.is_none() =>
{
cx.tcx.types.err
}
_ => ty,
}
_ => ty,
}
}
}
})
.map(Pat::wildcard_from_ty)
.collect()
})
.map(Pat::wildcard_from_ty)
.collect()
}
}
}
_ => vec![],
_ => vec![],
},
FixedLenSlice(_) | VarLenSlice(..) => match ty.kind {
ty::Slice(ty) | ty::Array(ty, _) => {
let arity = self.arity(cx, ty);
(0..arity).map(|_| Pat::wildcard_from_ty(ty)).collect()
}
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
ConstantValue(..) | ConstantRange(..) | NonExhaustive => vec![],
}
}
@ -850,19 +851,19 @@ impl<'tcx> Constructor<'tcx> {
/// A struct pattern's arity is the number of fields it contains, etc.
fn arity<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> u64 {
debug!("Constructor::arity({:#?}, {:?})", self, ty);
match ty.kind {
ty::Tuple(ref fs) => fs.len() as u64,
ty::Slice(..) | ty::Array(..) => match *self {
FixedLenSlice(length) => length,
VarLenSlice(prefix, suffix) => prefix + suffix,
ConstantValue(..) => 0,
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
match self {
Single | Variant(_) => match ty.kind {
ty::Tuple(ref fs) => fs.len() as u64,
ty::Slice(..) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
ty::Ref(..) => 1,
ty::Adt(adt, _) => {
adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64
}
_ => 0,
},
ty::Ref(..) => 1,
ty::Adt(adt, _) => {
adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64
}
_ => 0,
FixedLenSlice(length) => *length,
VarLenSlice(prefix, suffix) => prefix + suffix,
ConstantValue(..) | ConstantRange(..) | NonExhaustive => 0,
}
}
@ -886,53 +887,50 @@ impl<'tcx> Constructor<'tcx> {
pats: impl IntoIterator<Item = Pat<'tcx>>,
) -> Pat<'tcx> {
let mut subpatterns = pats.into_iter();
let pat = match ty.kind {
ty::Adt(..) | ty::Tuple(..) => {
let subpatterns = subpatterns
.enumerate()
.map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
.collect();
if let ty::Adt(adt, substs) = ty.kind {
if adt.is_enum() {
PatKind::Variant {
adt_def: adt,
substs,
variant_index: self.variant_index_for_adt(cx, adt),
subpatterns,
let pat = match self {
Single | Variant(_) => match ty.kind {
ty::Adt(..) | ty::Tuple(..) => {
let subpatterns = subpatterns
.enumerate()
.map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
.collect();
if let ty::Adt(adt, substs) = ty.kind {
if adt.is_enum() {
PatKind::Variant {
adt_def: adt,
substs,
variant_index: self.variant_index_for_adt(cx, adt),
subpatterns,
}
} else {
PatKind::Leaf { subpatterns }
}
} else {
PatKind::Leaf { subpatterns }
}
} else {
PatKind::Leaf { subpatterns }
}
}
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.nth(0).unwrap() },
ty::Slice(_) | ty::Array(..) => match self {
FixedLenSlice(_) => {
PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
}
VarLenSlice(prefix_len, _suffix_len) => {
let prefix = subpatterns.by_ref().take(*prefix_len as usize).collect();
let suffix = subpatterns.collect();
let wild = Pat::wildcard_from_ty(ty);
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
_ => match *self {
ConstantValue(value, _) => PatKind::Constant { value },
ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
end,
}),
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.nth(0).unwrap() },
ty::Slice(_) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
_ => PatKind::Wild,
},
FixedLenSlice(_) => {
PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
}
&VarLenSlice(prefix_len, _) => {
let prefix = subpatterns.by_ref().take(prefix_len as usize).collect();
let suffix = subpatterns.collect();
let wild = Pat::wildcard_from_ty(ty);
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
&ConstantValue(value, _) => PatKind::Constant { value },
&ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
end,
}),
NonExhaustive => PatKind::Wild,
};
Pat { ty, span: DUMMY_SP, kind: Box::new(pat) }
@ -1128,7 +1126,7 @@ fn all_constructors<'a, 'tcx>(
pcx: PatCtxt<'tcx>,
) -> Vec<Constructor<'tcx>> {
debug!("all_constructors({:?})", pcx.ty);
let ctors = match pcx.ty.kind {
match pcx.ty.kind {
ty::Bool => [true, false]
.iter()
.map(|&b| ConstantValue(ty::Const::from_bool(cx.tcx, b), pcx.span))
@ -1145,17 +1143,49 @@ fn all_constructors<'a, 'tcx>(
vec![VarLenSlice(0, 0)]
}
}
ty::Adt(def, substs) if def.is_enum() => def
.variants
.iter()
.filter(|v| {
!cx.tcx.features().exhaustive_patterns
|| !v
.uninhabited_from(cx.tcx, substs, def.adt_kind())
.contains(cx.tcx, cx.module)
})
.map(|v| Variant(v.def_id))
.collect(),
ty::Adt(def, substs) if def.is_enum() => {
let ctors: Vec<_> = def
.variants
.iter()
.filter(|v| {
!cx.tcx.features().exhaustive_patterns
|| !v
.uninhabited_from(cx.tcx, substs, def.adt_kind())
.contains(cx.tcx, cx.module)
})
.map(|v| Variant(v.def_id))
.collect();
// If our scrutinee is *privately* an empty enum, we must treat it as though it had an
// "unknown" constructor (in that case, all other patterns obviously can't be variants)
// to avoid exposing its emptyness. See the `match_privately_empty` test for details.
// FIXME: currently the only way I know of something can be a privately-empty enum is
// when the exhaustive_patterns feature flag is not present, so this is only needed for
// that case.
let is_privately_empty = ctors.is_empty() && !cx.is_uninhabited(pcx.ty);
// If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
// additionnal "unknown" constructor.
let is_declared_nonexhaustive =
def.is_variant_list_non_exhaustive() && !cx.is_local(pcx.ty);
if is_privately_empty || is_declared_nonexhaustive {
// There is no point in enumerating all possible variants, because the user can't
// actually match against them themselves. So we return only the fictitious
// constructor.
// E.g., in an example like:
// ```
// let err: io::ErrorKind = ...;
// match err {
// io::ErrorKind::NotFound => {},
// }
// ```
// we don't want to show every possible IO error, but instead have only `_` as the
// witness.
vec![NonExhaustive]
} else {
ctors
}
}
ty::Char => {
vec![
// The valid Unicode Scalar Value ranges.
@ -1175,6 +1205,15 @@ fn all_constructors<'a, 'tcx>(
),
]
}
ty::Int(_) | ty::Uint(_)
if pcx.ty.is_ptr_sized_integral()
&& !cx.tcx.features().precise_pointer_size_matching =>
{
// `usize`/`isize` are not allowed to be matched exhaustively unless the
// `precise_pointer_size_matching` feature is enabled. So we treat those types like
// `#[non_exhaustive]` enums by returning a special unmatcheable constructor.
vec![NonExhaustive]
}
ty::Int(ity) => {
let bits = Integer::from_attr(&cx.tcx, SignedInt(ity)).size().bits() as u128;
let min = 1u128 << (bits - 1);
@ -1193,8 +1232,7 @@ fn all_constructors<'a, 'tcx>(
vec![Single]
}
}
};
ctors
}
}
/// An inclusive interval, used for precise integer exhaustiveness checking.
@ -1592,9 +1630,6 @@ pub fn is_useful<'p, 'a, 'tcx>(
let all_ctors = all_constructors(cx, pcx);
debug!("all_ctors = {:#?}", all_ctors);
let is_privately_empty = all_ctors.is_empty() && !cx.is_uninhabited(pcx.ty);
let is_declared_nonexhaustive = cx.is_non_exhaustive_enum(pcx.ty) && !cx.is_local(pcx.ty);
// `missing_ctors` is the set of constructors from the same type as the
// first column of `matrix` that are matched only by wildcard patterns
// from the first column.
@ -1602,38 +1637,15 @@ pub fn is_useful<'p, 'a, 'tcx>(
// Therefore, if there is some pattern that is unmatched by `matrix`,
// it will still be unmatched if the first constructor is replaced by
// any of the constructors in `missing_ctors`
//
// However, if our scrutinee is *privately* an empty enum, we
// must treat it as though it had an "unknown" constructor (in
// that case, all other patterns obviously can't be variants)
// to avoid exposing its emptyness. See the `match_privately_empty`
// test for details.
//
// FIXME: currently the only way I know of something can
// be a privately-empty enum is when the exhaustive_patterns
// feature flag is not present, so this is only
// needed for that case.
// Missing constructors are those that are not matched by any
// non-wildcard patterns in the current column. To determine if
// the set is empty, we can check that `.peek().is_none()`, so
// we only fully construct them on-demand, because they're rarely used and can be big.
// Missing constructors are those that are not matched by any non-wildcard patterns in the
// current column. We only fully construct them on-demand, because they're rarely used and
// can be big.
let missing_ctors = MissingConstructors::new(cx.tcx, cx.param_env, all_ctors, used_ctors);
debug!(
"missing_ctors.empty()={:#?} is_privately_empty={:#?} is_declared_nonexhaustive={:#?}",
missing_ctors.is_empty(),
is_privately_empty,
is_declared_nonexhaustive
);
debug!("missing_ctors.empty()={:#?}", missing_ctors.is_empty(),);
// For privately empty and non-exhaustive enums, we work as if there were an "extra"
// `_` constructor for the type, so we can never match over all constructors.
let is_non_exhaustive = is_privately_empty
|| is_declared_nonexhaustive
|| (pcx.ty.is_ptr_sized_integral() && !cx.tcx.features().precise_pointer_size_matching);
if missing_ctors.is_empty() && !is_non_exhaustive {
if missing_ctors.is_empty() {
let (all_ctors, _) = missing_ctors.into_inner();
split_grouped_constructors(cx.tcx, cx.param_env, pcx, all_ctors, matrix, DUMMY_SP, None)
.into_iter()
@ -1662,26 +1674,9 @@ pub fn is_useful<'p, 'a, 'tcx>(
//
// we can report 3 witnesses: `S`, `E`, and `W`.
//
// However, there are 2 cases where we don't want
// However, there is a case where we don't want
// to do this and instead report a single `_` witness:
//
// 1) If the user is matching against a non-exhaustive
// enum, there is no point in enumerating all possible
// variants, because the user can't actually match
// against them themselves, e.g., in an example like:
// ```
// let err: io::ErrorKind = ...;
// match err {
// io::ErrorKind::NotFound => {},
// }
// ```
// we don't want to show every possible IO error,
// but instead have `_` as the witness (this is
// actually *required* if the user specified *all*
// IO errors, but is probably what we want in every
// case).
//
// 2) If the user didn't actually specify a constructor
// if the user didn't actually specify a constructor
// in this arm, e.g., in
// ```
// let x: (Direction, Direction, bool) = ...;
@ -1691,7 +1686,7 @@ pub fn is_useful<'p, 'a, 'tcx>(
// `(<direction-1>, <direction-2>, true)` - we are
// satisfied with `(_, _, true)`. In this case,
// `used_ctors` is empty.
if is_non_exhaustive || missing_ctors.all_ctors_are_missing() {
if missing_ctors.all_ctors_are_missing() {
// All constructors are unused. Add a wild pattern
// rather than each individual constructor.
usefulness.apply_wildcard(pcx.ty)
@ -2218,13 +2213,21 @@ fn patterns_for_variant<'p, 'a: 'p, 'tcx>(
/// fields filled with wild patterns.
fn specialize_one_pattern<'p, 'a: 'p, 'q: 'p, 'tcx>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
pat: &'q Pat<'tcx>,
mut pat: &'q Pat<'tcx>,
constructor: &Constructor<'tcx>,
ctor_wild_subpatterns: &[&'p Pat<'tcx>],
) -> Option<PatStack<'p, 'tcx>> {
while let PatKind::AscribeUserType { ref subpattern, .. } = *pat.kind {
pat = subpattern;
}
if let NonExhaustive = constructor {
// Only a wildcard pattern can match the special extra constructor
return if pat.is_wildcard() { Some(PatStack::default()) } else { None };
}
let result = match *pat.kind {
PatKind::AscribeUserType { ref subpattern, .. } => PatStack::from_pattern(subpattern)
.specialize_constructor(cx, constructor, ctor_wild_subpatterns),
PatKind::AscribeUserType { .. } => bug!(), // Handled above
PatKind::Binding { .. } | PatKind::Wild => {
Some(PatStack::from_slice(ctor_wild_subpatterns))