Auto merge of #88272 - willcrichton:mutable-sparse-matrix, r=ecstatic-morse
Add bit removal methods to SparseBitMatrix and factor *BitSet relational methods into more extensible trait I need the ability to clear the bits out of a row from `SparseBitMatrix`. Currently, all the mutating methods only allow insertion of bits, and there is no way to get access to the underlying data. One approach is simply to make `ensure_row` public, since it grants `&mut` access to the underlying `HybridBitSet`. This PR adds the `pub` modifier. However, presumably this method was private for a reason, so I'm open to other designs. I would prefer general mutable access to the rows, because that way I can add many mutating operations (`clear`, `intersect`, etc.) without filing a PR each time :-) r? `@ecstatic-morse`
This commit is contained in:
commit
608b5e1c20
@ -16,6 +16,43 @@
|
||||
pub const WORD_BYTES: usize = mem::size_of::<Word>();
|
||||
pub const WORD_BITS: usize = WORD_BYTES * 8;
|
||||
|
||||
pub trait BitRelations<Rhs> {
|
||||
fn union(&mut self, other: &Rhs) -> bool;
|
||||
fn subtract(&mut self, other: &Rhs) -> bool;
|
||||
fn intersect(&mut self, other: &Rhs) -> bool;
|
||||
}
|
||||
|
||||
macro_rules! bit_relations_inherent_impls {
|
||||
() => {
|
||||
/// Sets `self = self | other` and returns `true` if `self` changed
|
||||
/// (i.e., if new bits were added).
|
||||
pub fn union<Rhs>(&mut self, other: &Rhs) -> bool
|
||||
where
|
||||
Self: BitRelations<Rhs>,
|
||||
{
|
||||
<Self as BitRelations<Rhs>>::union(self, other)
|
||||
}
|
||||
|
||||
/// Sets `self = self - other` and returns `true` if `self` changed.
|
||||
/// (i.e., if any bits were removed).
|
||||
pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool
|
||||
where
|
||||
Self: BitRelations<Rhs>,
|
||||
{
|
||||
<Self as BitRelations<Rhs>>::subtract(self, other)
|
||||
}
|
||||
|
||||
/// Sets `self = self & other` and return `true` if `self` changed.
|
||||
/// (i.e., if any bits were removed).
|
||||
pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool
|
||||
where
|
||||
Self: BitRelations<Rhs>,
|
||||
{
|
||||
<Self as BitRelations<Rhs>>::intersect(self, other)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// A fixed-size bitset type with a dense representation.
|
||||
///
|
||||
/// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
|
||||
@ -134,25 +171,6 @@ pub fn remove(&mut self, elem: T) -> bool {
|
||||
new_word != word
|
||||
}
|
||||
|
||||
/// Sets `self = self | other` and returns `true` if `self` changed
|
||||
/// (i.e., if new bits were added).
|
||||
pub fn union(&mut self, other: &impl UnionIntoBitSet<T>) -> bool {
|
||||
other.union_into(self)
|
||||
}
|
||||
|
||||
/// Sets `self = self - other` and returns `true` if `self` changed.
|
||||
/// (i.e., if any bits were removed).
|
||||
pub fn subtract(&mut self, other: &impl SubtractFromBitSet<T>) -> bool {
|
||||
other.subtract_from(self)
|
||||
}
|
||||
|
||||
/// Sets `self = self & other` and return `true` if `self` changed.
|
||||
/// (i.e., if any bits were removed).
|
||||
pub fn intersect(&mut self, other: &BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size);
|
||||
bitwise(&mut self.words, &other.words, |a, b| a & b)
|
||||
}
|
||||
|
||||
/// Gets a slice of the underlying words.
|
||||
pub fn words(&self) -> &[Word] {
|
||||
&self.words
|
||||
@ -208,33 +226,208 @@ fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
|
||||
|
||||
not_already
|
||||
}
|
||||
|
||||
bit_relations_inherent_impls! {}
|
||||
}
|
||||
|
||||
/// This is implemented by all the bitsets so that BitSet::union() can be
|
||||
/// passed any type of bitset.
|
||||
pub trait UnionIntoBitSet<T: Idx> {
|
||||
// Performs `other = other | self`.
|
||||
fn union_into(&self, other: &mut BitSet<T>) -> bool;
|
||||
}
|
||||
|
||||
/// This is implemented by all the bitsets so that BitSet::subtract() can be
|
||||
/// passed any type of bitset.
|
||||
pub trait SubtractFromBitSet<T: Idx> {
|
||||
// Performs `other = other - self`.
|
||||
fn subtract_from(&self, other: &mut BitSet<T>) -> bool;
|
||||
}
|
||||
|
||||
impl<T: Idx> UnionIntoBitSet<T> for BitSet<T> {
|
||||
fn union_into(&self, other: &mut BitSet<T>) -> bool {
|
||||
// dense REL dense
|
||||
impl<T: Idx> BitRelations<BitSet<T>> for BitSet<T> {
|
||||
fn union(&mut self, other: &BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size);
|
||||
bitwise(&mut other.words, &self.words, |a, b| a | b)
|
||||
bitwise(&mut self.words, &other.words, |a, b| a | b)
|
||||
}
|
||||
|
||||
fn subtract(&mut self, other: &BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size);
|
||||
bitwise(&mut self.words, &other.words, |a, b| a & !b)
|
||||
}
|
||||
|
||||
fn intersect(&mut self, other: &BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size);
|
||||
bitwise(&mut self.words, &other.words, |a, b| a & b)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Idx> SubtractFromBitSet<T> for BitSet<T> {
|
||||
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size);
|
||||
bitwise(&mut other.words, &self.words, |a, b| a & !b)
|
||||
// Applies a function to mutate a bitset, and returns true if any
|
||||
// of the applications return true
|
||||
fn sequential_update<T: Idx>(
|
||||
mut self_update: impl FnMut(T) -> bool,
|
||||
it: impl Iterator<Item = T>,
|
||||
) -> bool {
|
||||
let mut changed = false;
|
||||
for elem in it {
|
||||
changed |= self_update(elem);
|
||||
}
|
||||
changed
|
||||
}
|
||||
|
||||
// Optimization of intersection for SparseBitSet that's generic
|
||||
// over the RHS
|
||||
fn sparse_intersect<T: Idx>(
|
||||
set: &mut SparseBitSet<T>,
|
||||
other_contains: impl Fn(&T) -> bool,
|
||||
) -> bool {
|
||||
let size = set.elems.len();
|
||||
set.elems.retain(|elem| other_contains(elem));
|
||||
set.elems.len() != size
|
||||
}
|
||||
|
||||
// Optimization of dense/sparse intersection. The resulting set is
|
||||
// guaranteed to be at most the size of the sparse set, and hence can be
|
||||
// represented as a sparse set. Therefore the sparse set is copied and filtered,
|
||||
// then returned as the new set.
|
||||
fn dense_sparse_intersect<T: Idx>(
|
||||
dense: &BitSet<T>,
|
||||
sparse: &SparseBitSet<T>,
|
||||
) -> (SparseBitSet<T>, bool) {
|
||||
let mut sparse_copy = sparse.clone();
|
||||
sparse_intersect(&mut sparse_copy, |el| dense.contains(*el));
|
||||
let n = sparse_copy.len();
|
||||
(sparse_copy, n != dense.count())
|
||||
}
|
||||
|
||||
// hybrid REL dense
|
||||
impl<T: Idx> BitRelations<BitSet<T>> for HybridBitSet<T> {
|
||||
fn union(&mut self, other: &BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size(), other.domain_size);
|
||||
match self {
|
||||
HybridBitSet::Sparse(sparse) => {
|
||||
// `self` is sparse and `other` is dense. To
|
||||
// merge them, we have two available strategies:
|
||||
// * Densify `self` then merge other
|
||||
// * Clone other then integrate bits from `self`
|
||||
// The second strategy requires dedicated method
|
||||
// since the usual `union` returns the wrong
|
||||
// result. In the dedicated case the computation
|
||||
// is slightly faster if the bits of the sparse
|
||||
// bitset map to only few words of the dense
|
||||
// representation, i.e. indices are near each
|
||||
// other.
|
||||
//
|
||||
// Benchmarking seems to suggest that the second
|
||||
// option is worth it.
|
||||
let mut new_dense = other.clone();
|
||||
let changed = new_dense.reverse_union_sparse(sparse);
|
||||
*self = HybridBitSet::Dense(new_dense);
|
||||
changed
|
||||
}
|
||||
|
||||
HybridBitSet::Dense(dense) => dense.union(other),
|
||||
}
|
||||
}
|
||||
|
||||
fn subtract(&mut self, other: &BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size(), other.domain_size);
|
||||
match self {
|
||||
HybridBitSet::Sparse(sparse) => {
|
||||
sequential_update(|elem| sparse.remove(elem), other.iter())
|
||||
}
|
||||
HybridBitSet::Dense(dense) => dense.subtract(other),
|
||||
}
|
||||
}
|
||||
|
||||
fn intersect(&mut self, other: &BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size(), other.domain_size);
|
||||
match self {
|
||||
HybridBitSet::Sparse(sparse) => sparse_intersect(sparse, |elem| other.contains(*elem)),
|
||||
HybridBitSet::Dense(dense) => dense.intersect(other),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// dense REL hybrid
|
||||
impl<T: Idx> BitRelations<HybridBitSet<T>> for BitSet<T> {
|
||||
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size());
|
||||
match other {
|
||||
HybridBitSet::Sparse(sparse) => {
|
||||
sequential_update(|elem| self.insert(elem), sparse.iter().cloned())
|
||||
}
|
||||
HybridBitSet::Dense(dense) => self.union(dense),
|
||||
}
|
||||
}
|
||||
|
||||
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size());
|
||||
match other {
|
||||
HybridBitSet::Sparse(sparse) => {
|
||||
sequential_update(|elem| self.remove(elem), sparse.iter().cloned())
|
||||
}
|
||||
HybridBitSet::Dense(dense) => self.subtract(dense),
|
||||
}
|
||||
}
|
||||
|
||||
fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size());
|
||||
match other {
|
||||
HybridBitSet::Sparse(sparse) => {
|
||||
let (updated, changed) = dense_sparse_intersect(self, sparse);
|
||||
|
||||
// We can't directly assign the SparseBitSet to the BitSet, and
|
||||
// doing `*self = updated.to_dense()` would cause a drop / reallocation. Instead,
|
||||
// the BitSet is cleared and `updated` is copied into `self`.
|
||||
self.clear();
|
||||
for elem in updated.iter() {
|
||||
self.insert(*elem);
|
||||
}
|
||||
changed
|
||||
}
|
||||
HybridBitSet::Dense(dense) => self.intersect(dense),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// hybrid REL hybrid
|
||||
impl<T: Idx> BitRelations<HybridBitSet<T>> for HybridBitSet<T> {
|
||||
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size(), other.domain_size());
|
||||
match self {
|
||||
HybridBitSet::Sparse(_) => {
|
||||
match other {
|
||||
HybridBitSet::Sparse(other_sparse) => {
|
||||
// Both sets are sparse. Add the elements in
|
||||
// `other_sparse` to `self` one at a time. This
|
||||
// may or may not cause `self` to be densified.
|
||||
let mut changed = false;
|
||||
for elem in other_sparse.iter() {
|
||||
changed |= self.insert(*elem);
|
||||
}
|
||||
changed
|
||||
}
|
||||
|
||||
HybridBitSet::Dense(other_dense) => self.union(other_dense),
|
||||
}
|
||||
}
|
||||
|
||||
HybridBitSet::Dense(self_dense) => self_dense.union(other),
|
||||
}
|
||||
}
|
||||
|
||||
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size(), other.domain_size());
|
||||
match self {
|
||||
HybridBitSet::Sparse(self_sparse) => {
|
||||
sequential_update(|elem| self_sparse.remove(elem), other.iter())
|
||||
}
|
||||
HybridBitSet::Dense(self_dense) => self_dense.subtract(other),
|
||||
}
|
||||
}
|
||||
|
||||
fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size(), other.domain_size());
|
||||
match self {
|
||||
HybridBitSet::Sparse(self_sparse) => {
|
||||
sparse_intersect(self_sparse, |elem| other.contains(*elem))
|
||||
}
|
||||
HybridBitSet::Dense(self_dense) => match other {
|
||||
HybridBitSet::Sparse(other_sparse) => {
|
||||
let (updated, changed) = dense_sparse_intersect(self_dense, other_sparse);
|
||||
*self = HybridBitSet::Sparse(updated);
|
||||
changed
|
||||
}
|
||||
HybridBitSet::Dense(other_dense) => self_dense.intersect(other_dense),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -441,28 +634,8 @@ fn to_dense(&self) -> BitSet<T> {
|
||||
fn iter(&self) -> slice::Iter<'_, T> {
|
||||
self.elems.iter()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> {
|
||||
fn union_into(&self, other: &mut BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size);
|
||||
let mut changed = false;
|
||||
for elem in self.iter() {
|
||||
changed |= other.insert(*elem);
|
||||
}
|
||||
changed
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
|
||||
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
|
||||
assert_eq!(self.domain_size, other.domain_size);
|
||||
let mut changed = false;
|
||||
for elem in self.iter() {
|
||||
changed |= other.remove(*elem);
|
||||
}
|
||||
changed
|
||||
}
|
||||
bit_relations_inherent_impls! {}
|
||||
}
|
||||
|
||||
/// A fixed-size bitset type with a hybrid representation: sparse when there
|
||||
@ -579,48 +752,6 @@ pub fn remove(&mut self, elem: T) -> bool {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn union(&mut self, other: &HybridBitSet<T>) -> bool {
|
||||
match self {
|
||||
HybridBitSet::Sparse(self_sparse) => {
|
||||
match other {
|
||||
HybridBitSet::Sparse(other_sparse) => {
|
||||
// Both sets are sparse. Add the elements in
|
||||
// `other_sparse` to `self` one at a time. This
|
||||
// may or may not cause `self` to be densified.
|
||||
assert_eq!(self.domain_size(), other.domain_size());
|
||||
let mut changed = false;
|
||||
for elem in other_sparse.iter() {
|
||||
changed |= self.insert(*elem);
|
||||
}
|
||||
changed
|
||||
}
|
||||
HybridBitSet::Dense(other_dense) => {
|
||||
// `self` is sparse and `other` is dense. To
|
||||
// merge them, we have two available strategies:
|
||||
// * Densify `self` then merge other
|
||||
// * Clone other then integrate bits from `self`
|
||||
// The second strategy requires dedicated method
|
||||
// since the usual `union` returns the wrong
|
||||
// result. In the dedicated case the computation
|
||||
// is slightly faster if the bits of the sparse
|
||||
// bitset map to only few words of the dense
|
||||
// representation, i.e. indices are near each
|
||||
// other.
|
||||
//
|
||||
// Benchmarking seems to suggest that the second
|
||||
// option is worth it.
|
||||
let mut new_dense = other_dense.clone();
|
||||
let changed = new_dense.reverse_union_sparse(self_sparse);
|
||||
*self = HybridBitSet::Dense(new_dense);
|
||||
changed
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
HybridBitSet::Dense(self_dense) => self_dense.union(other),
|
||||
}
|
||||
}
|
||||
|
||||
/// Converts to a dense set, consuming itself in the process.
|
||||
pub fn to_dense(self) -> BitSet<T> {
|
||||
match self {
|
||||
@ -635,24 +766,8 @@ pub fn iter(&self) -> HybridIter<'_, T> {
|
||||
HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> {
|
||||
fn union_into(&self, other: &mut BitSet<T>) -> bool {
|
||||
match self {
|
||||
HybridBitSet::Sparse(sparse) => sparse.union_into(other),
|
||||
HybridBitSet::Dense(dense) => dense.union_into(other),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Idx> SubtractFromBitSet<T> for HybridBitSet<T> {
|
||||
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
|
||||
match self {
|
||||
HybridBitSet::Sparse(sparse) => sparse.subtract_from(other),
|
||||
HybridBitSet::Dense(dense) => dense.subtract_from(other),
|
||||
}
|
||||
}
|
||||
bit_relations_inherent_impls! {}
|
||||
}
|
||||
|
||||
pub enum HybridIter<'a, T: Idx> {
|
||||
@ -974,6 +1089,26 @@ pub fn insert(&mut self, row: R, column: C) -> bool {
|
||||
self.ensure_row(row).insert(column)
|
||||
}
|
||||
|
||||
/// Sets the cell at `(row, column)` to false. Put another way, delete
|
||||
/// `column` from the bitset for `row`. Has no effect if `row` does not
|
||||
/// exist.
|
||||
///
|
||||
/// Returns `true` if this changed the matrix.
|
||||
pub fn remove(&mut self, row: R, column: C) -> bool {
|
||||
match self.rows.get_mut(row) {
|
||||
Some(Some(row)) => row.remove(column),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets all columns at `row` to false. Has no effect if `row` does
|
||||
/// not exist.
|
||||
pub fn clear(&mut self, row: R) {
|
||||
if let Some(Some(row)) = self.rows.get_mut(row) {
|
||||
row.clear();
|
||||
}
|
||||
}
|
||||
|
||||
/// Do the bits from `row` contain `column`? Put another way, is
|
||||
/// the matrix cell at `(row, column)` true? Put yet another way,
|
||||
/// if the matrix represents (transitive) reachability, can
|
||||
@ -1002,11 +1137,6 @@ pub fn union_rows(&mut self, read: R, write: R) -> bool {
|
||||
}
|
||||
}
|
||||
|
||||
/// Union a row, `from`, into the `into` row.
|
||||
pub fn union_into_row(&mut self, into: R, from: &HybridBitSet<C>) -> bool {
|
||||
self.ensure_row(into).union(from)
|
||||
}
|
||||
|
||||
/// Insert all bits in the given row.
|
||||
pub fn insert_all_into_row(&mut self, row: R) {
|
||||
self.ensure_row(row).insert_all();
|
||||
@ -1025,6 +1155,45 @@ pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
|
||||
pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
|
||||
if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
|
||||
}
|
||||
|
||||
/// Interescts `row` with `set`. `set` can be either `BitSet` or
|
||||
/// `HybridBitSet`. Has no effect if `row` does not exist.
|
||||
///
|
||||
/// Returns true if the row was changed.
|
||||
pub fn intersect_row<Set>(&mut self, row: R, set: &Set) -> bool
|
||||
where
|
||||
HybridBitSet<C>: BitRelations<Set>,
|
||||
{
|
||||
match self.rows.get_mut(row) {
|
||||
Some(Some(row)) => row.intersect(set),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Subtracts `set from `row`. `set` can be either `BitSet` or
|
||||
/// `HybridBitSet`. Has no effect if `row` does not exist.
|
||||
///
|
||||
/// Returns true if the row was changed.
|
||||
pub fn subtract_row<Set>(&mut self, row: R, set: &Set) -> bool
|
||||
where
|
||||
HybridBitSet<C>: BitRelations<Set>,
|
||||
{
|
||||
match self.rows.get_mut(row) {
|
||||
Some(Some(row)) => row.subtract(set),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Unions `row` with `set`. `set` can be either `BitSet` or
|
||||
/// `HybridBitSet`.
|
||||
///
|
||||
/// Returns true if the row was changed.
|
||||
pub fn union_row<Set>(&mut self, row: R, set: &Set) -> bool
|
||||
where
|
||||
HybridBitSet<C>: BitRelations<Set>,
|
||||
{
|
||||
self.ensure_row(row).union(set)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -104,18 +104,40 @@ fn hybrid_bitset() {
|
||||
assert!(dense10.superset(&dense10)); // dense + dense (self)
|
||||
assert!(dense256.superset(&dense10)); // dense + dense
|
||||
|
||||
let mut hybrid = sparse038;
|
||||
let mut hybrid = sparse038.clone();
|
||||
assert!(!sparse01358.union(&hybrid)); // no change
|
||||
assert!(hybrid.union(&sparse01358));
|
||||
assert!(hybrid.superset(&sparse01358) && sparse01358.superset(&hybrid));
|
||||
assert!(!dense10.union(&sparse01358));
|
||||
assert!(!dense256.union(&dense10));
|
||||
let mut dense = dense10;
|
||||
|
||||
// dense / sparse where dense superset sparse
|
||||
assert!(!dense10.clone().union(&sparse01358));
|
||||
assert!(sparse01358.clone().union(&dense10));
|
||||
assert!(dense10.clone().intersect(&sparse01358));
|
||||
assert!(!sparse01358.clone().intersect(&dense10));
|
||||
assert!(dense10.clone().subtract(&sparse01358));
|
||||
assert!(sparse01358.clone().subtract(&dense10));
|
||||
|
||||
// dense / sparse where sparse superset dense
|
||||
let dense038 = sparse038.to_dense();
|
||||
assert!(!sparse01358.clone().union(&dense038));
|
||||
assert!(dense038.clone().union(&sparse01358));
|
||||
assert!(sparse01358.clone().intersect(&dense038));
|
||||
assert!(!dense038.clone().intersect(&sparse01358));
|
||||
assert!(sparse01358.clone().subtract(&dense038));
|
||||
assert!(dense038.clone().subtract(&sparse01358));
|
||||
|
||||
let mut dense = dense10.clone();
|
||||
assert!(dense.union(&dense256));
|
||||
assert!(dense.superset(&dense256) && dense256.superset(&dense));
|
||||
assert!(hybrid.union(&dense256));
|
||||
assert!(hybrid.superset(&dense256) && dense256.superset(&hybrid));
|
||||
|
||||
assert!(!dense10.clone().intersect(&dense256));
|
||||
assert!(dense256.clone().intersect(&dense10));
|
||||
assert!(dense10.clone().subtract(&dense256));
|
||||
assert!(dense256.clone().subtract(&dense10));
|
||||
|
||||
assert_eq!(dense256.iter().count(), 256);
|
||||
let mut dense0 = dense256;
|
||||
for i in 0..256 {
|
||||
@ -282,6 +304,72 @@ fn sparse_matrix_iter() {
|
||||
assert!(iter.next().is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sparse_matrix_operations() {
|
||||
let mut matrix: SparseBitMatrix<usize, usize> = SparseBitMatrix::new(100);
|
||||
matrix.insert(3, 22);
|
||||
matrix.insert(3, 75);
|
||||
matrix.insert(2, 99);
|
||||
matrix.insert(4, 0);
|
||||
|
||||
let mut disjoint: HybridBitSet<usize> = HybridBitSet::new_empty(100);
|
||||
disjoint.insert(33);
|
||||
|
||||
let mut superset = HybridBitSet::new_empty(100);
|
||||
superset.insert(22);
|
||||
superset.insert(75);
|
||||
superset.insert(33);
|
||||
|
||||
let mut subset = HybridBitSet::new_empty(100);
|
||||
subset.insert(22);
|
||||
|
||||
// SparseBitMatrix::remove
|
||||
{
|
||||
let mut matrix = matrix.clone();
|
||||
matrix.remove(3, 22);
|
||||
assert!(!matrix.row(3).unwrap().contains(22));
|
||||
matrix.remove(0, 0);
|
||||
assert!(matrix.row(0).is_none());
|
||||
}
|
||||
|
||||
// SparseBitMatrix::clear
|
||||
{
|
||||
let mut matrix = matrix.clone();
|
||||
matrix.clear(3);
|
||||
assert!(!matrix.row(3).unwrap().contains(75));
|
||||
matrix.clear(0);
|
||||
assert!(matrix.row(0).is_none());
|
||||
}
|
||||
|
||||
// SparseBitMatrix::intersect_row
|
||||
{
|
||||
let mut matrix = matrix.clone();
|
||||
assert!(!matrix.intersect_row(3, &superset));
|
||||
assert!(matrix.intersect_row(3, &subset));
|
||||
matrix.intersect_row(0, &disjoint);
|
||||
assert!(matrix.row(0).is_none());
|
||||
}
|
||||
|
||||
// SparseBitMatrix::subtract_row
|
||||
{
|
||||
let mut matrix = matrix.clone();
|
||||
assert!(!matrix.subtract_row(3, &disjoint));
|
||||
assert!(matrix.subtract_row(3, &subset));
|
||||
assert!(matrix.subtract_row(3, &superset));
|
||||
matrix.intersect_row(0, &disjoint);
|
||||
assert!(matrix.row(0).is_none());
|
||||
}
|
||||
|
||||
// SparseBitMatrix::union_row
|
||||
{
|
||||
let mut matrix = matrix.clone();
|
||||
assert!(!matrix.union_row(3, &subset));
|
||||
assert!(matrix.union_row(3, &disjoint));
|
||||
matrix.union_row(0, &disjoint);
|
||||
assert!(matrix.row(0).is_some());
|
||||
}
|
||||
}
|
||||
|
||||
/// Merge dense hybrid set into empty sparse hybrid set.
|
||||
#[bench]
|
||||
fn union_hybrid_sparse_empty_to_dense(b: &mut Bencher) {
|
||||
|
@ -160,7 +160,7 @@ impl<N: Idx> LivenessValues<N> {
|
||||
/// region. Returns whether any of them are newly added.
|
||||
crate fn add_elements(&mut self, row: N, locations: &HybridBitSet<PointIndex>) -> bool {
|
||||
debug!("LivenessValues::add_elements(row={:?}, locations={:?})", row, locations);
|
||||
self.points.union_into_row(row, locations)
|
||||
self.points.union_row(row, locations)
|
||||
}
|
||||
|
||||
/// Adds all the control-flow points to the values for `r`.
|
||||
@ -294,7 +294,7 @@ impl<N: Idx> RegionValues<N> {
|
||||
/// the region `to` in `self`.
|
||||
crate fn merge_liveness<M: Idx>(&mut self, to: N, from: M, values: &LivenessValues<M>) {
|
||||
if let Some(set) = values.points.row(from) {
|
||||
self.points.union_into_row(to, set);
|
||||
self.points.union_row(to, set);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -626,7 +626,7 @@ fn compute_storage_conflicts(
|
||||
// Locals that are always live or ones that need to be stored across
|
||||
// suspension points are not eligible for overlap.
|
||||
let mut ineligible_locals = always_live_locals.into_inner();
|
||||
ineligible_locals.intersect(saved_locals);
|
||||
ineligible_locals.intersect(&**saved_locals);
|
||||
|
||||
// Compute the storage conflicts for all eligible locals.
|
||||
let mut visitor = StorageConflictVisitor {
|
||||
@ -701,7 +701,7 @@ fn apply_state(&mut self, flow_state: &BitSet<Local>, loc: Location) {
|
||||
}
|
||||
|
||||
let mut eligible_storage_live = flow_state.clone();
|
||||
eligible_storage_live.intersect(&self.saved_locals);
|
||||
eligible_storage_live.intersect(&**self.saved_locals);
|
||||
|
||||
for local in eligible_storage_live.iter() {
|
||||
self.local_conflicts.union_row_with(&eligible_storage_live, local);
|
||||
|
Loading…
Reference in New Issue
Block a user