Auto merge of #88272 - willcrichton:mutable-sparse-matrix, r=ecstatic-morse

Add bit removal methods to SparseBitMatrix and factor *BitSet relational methods into more extensible trait

I need the ability to clear the bits out of a row from `SparseBitMatrix`. Currently, all the mutating methods only allow insertion of bits, and there is no way to get access to the underlying data.

One approach is simply to make `ensure_row` public, since it grants `&mut` access to the underlying `HybridBitSet`. This PR adds the `pub` modifier. However, presumably this method was private for a reason, so I'm open to other designs. I would prefer general mutable access to the rows, because that way I can add many mutating operations (`clear`, `intersect`, etc.) without filing a PR each time :-)

r? `@ecstatic-morse`
This commit is contained in:
bors 2021-09-01 06:13:15 +00:00
commit 608b5e1c20
4 changed files with 389 additions and 132 deletions

View File

@ -16,6 +16,43 @@
pub const WORD_BYTES: usize = mem::size_of::<Word>();
pub const WORD_BITS: usize = WORD_BYTES * 8;
pub trait BitRelations<Rhs> {
fn union(&mut self, other: &Rhs) -> bool;
fn subtract(&mut self, other: &Rhs) -> bool;
fn intersect(&mut self, other: &Rhs) -> bool;
}
macro_rules! bit_relations_inherent_impls {
() => {
/// Sets `self = self | other` and returns `true` if `self` changed
/// (i.e., if new bits were added).
pub fn union<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::union(self, other)
}
/// Sets `self = self - other` and returns `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::subtract(self, other)
}
/// Sets `self = self & other` and return `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::intersect(self, other)
}
};
}
/// A fixed-size bitset type with a dense representation.
///
/// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
@ -134,25 +171,6 @@ pub fn remove(&mut self, elem: T) -> bool {
new_word != word
}
/// Sets `self = self | other` and returns `true` if `self` changed
/// (i.e., if new bits were added).
pub fn union(&mut self, other: &impl UnionIntoBitSet<T>) -> bool {
other.union_into(self)
}
/// Sets `self = self - other` and returns `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn subtract(&mut self, other: &impl SubtractFromBitSet<T>) -> bool {
other.subtract_from(self)
}
/// Sets `self = self & other` and return `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn intersect(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & b)
}
/// Gets a slice of the underlying words.
pub fn words(&self) -> &[Word] {
&self.words
@ -208,33 +226,208 @@ fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
not_already
}
bit_relations_inherent_impls! {}
}
/// This is implemented by all the bitsets so that BitSet::union() can be
/// passed any type of bitset.
pub trait UnionIntoBitSet<T: Idx> {
// Performs `other = other | self`.
fn union_into(&self, other: &mut BitSet<T>) -> bool;
}
/// This is implemented by all the bitsets so that BitSet::subtract() can be
/// passed any type of bitset.
pub trait SubtractFromBitSet<T: Idx> {
// Performs `other = other - self`.
fn subtract_from(&self, other: &mut BitSet<T>) -> bool;
}
impl<T: Idx> UnionIntoBitSet<T> for BitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
// dense REL dense
impl<T: Idx> BitRelations<BitSet<T>> for BitSet<T> {
fn union(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut other.words, &self.words, |a, b| a | b)
bitwise(&mut self.words, &other.words, |a, b| a | b)
}
fn subtract(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & !b)
}
fn intersect(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & b)
}
}
impl<T: Idx> SubtractFromBitSet<T> for BitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut other.words, &self.words, |a, b| a & !b)
// Applies a function to mutate a bitset, and returns true if any
// of the applications return true
fn sequential_update<T: Idx>(
mut self_update: impl FnMut(T) -> bool,
it: impl Iterator<Item = T>,
) -> bool {
let mut changed = false;
for elem in it {
changed |= self_update(elem);
}
changed
}
// Optimization of intersection for SparseBitSet that's generic
// over the RHS
fn sparse_intersect<T: Idx>(
set: &mut SparseBitSet<T>,
other_contains: impl Fn(&T) -> bool,
) -> bool {
let size = set.elems.len();
set.elems.retain(|elem| other_contains(elem));
set.elems.len() != size
}
// Optimization of dense/sparse intersection. The resulting set is
// guaranteed to be at most the size of the sparse set, and hence can be
// represented as a sparse set. Therefore the sparse set is copied and filtered,
// then returned as the new set.
fn dense_sparse_intersect<T: Idx>(
dense: &BitSet<T>,
sparse: &SparseBitSet<T>,
) -> (SparseBitSet<T>, bool) {
let mut sparse_copy = sparse.clone();
sparse_intersect(&mut sparse_copy, |el| dense.contains(*el));
let n = sparse_copy.len();
(sparse_copy, n != dense.count())
}
// hybrid REL dense
impl<T: Idx> BitRelations<BitSet<T>> for HybridBitSet<T> {
fn union(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size);
match self {
HybridBitSet::Sparse(sparse) => {
// `self` is sparse and `other` is dense. To
// merge them, we have two available strategies:
// * Densify `self` then merge other
// * Clone other then integrate bits from `self`
// The second strategy requires dedicated method
// since the usual `union` returns the wrong
// result. In the dedicated case the computation
// is slightly faster if the bits of the sparse
// bitset map to only few words of the dense
// representation, i.e. indices are near each
// other.
//
// Benchmarking seems to suggest that the second
// option is worth it.
let mut new_dense = other.clone();
let changed = new_dense.reverse_union_sparse(sparse);
*self = HybridBitSet::Dense(new_dense);
changed
}
HybridBitSet::Dense(dense) => dense.union(other),
}
}
fn subtract(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size);
match self {
HybridBitSet::Sparse(sparse) => {
sequential_update(|elem| sparse.remove(elem), other.iter())
}
HybridBitSet::Dense(dense) => dense.subtract(other),
}
}
fn intersect(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size);
match self {
HybridBitSet::Sparse(sparse) => sparse_intersect(sparse, |elem| other.contains(*elem)),
HybridBitSet::Dense(dense) => dense.intersect(other),
}
}
}
// dense REL hybrid
impl<T: Idx> BitRelations<HybridBitSet<T>> for BitSet<T> {
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size());
match other {
HybridBitSet::Sparse(sparse) => {
sequential_update(|elem| self.insert(elem), sparse.iter().cloned())
}
HybridBitSet::Dense(dense) => self.union(dense),
}
}
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size());
match other {
HybridBitSet::Sparse(sparse) => {
sequential_update(|elem| self.remove(elem), sparse.iter().cloned())
}
HybridBitSet::Dense(dense) => self.subtract(dense),
}
}
fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size());
match other {
HybridBitSet::Sparse(sparse) => {
let (updated, changed) = dense_sparse_intersect(self, sparse);
// We can't directly assign the SparseBitSet to the BitSet, and
// doing `*self = updated.to_dense()` would cause a drop / reallocation. Instead,
// the BitSet is cleared and `updated` is copied into `self`.
self.clear();
for elem in updated.iter() {
self.insert(*elem);
}
changed
}
HybridBitSet::Dense(dense) => self.intersect(dense),
}
}
}
// hybrid REL hybrid
impl<T: Idx> BitRelations<HybridBitSet<T>> for HybridBitSet<T> {
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size());
match self {
HybridBitSet::Sparse(_) => {
match other {
HybridBitSet::Sparse(other_sparse) => {
// Both sets are sparse. Add the elements in
// `other_sparse` to `self` one at a time. This
// may or may not cause `self` to be densified.
let mut changed = false;
for elem in other_sparse.iter() {
changed |= self.insert(*elem);
}
changed
}
HybridBitSet::Dense(other_dense) => self.union(other_dense),
}
}
HybridBitSet::Dense(self_dense) => self_dense.union(other),
}
}
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size());
match self {
HybridBitSet::Sparse(self_sparse) => {
sequential_update(|elem| self_sparse.remove(elem), other.iter())
}
HybridBitSet::Dense(self_dense) => self_dense.subtract(other),
}
}
fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size());
match self {
HybridBitSet::Sparse(self_sparse) => {
sparse_intersect(self_sparse, |elem| other.contains(*elem))
}
HybridBitSet::Dense(self_dense) => match other {
HybridBitSet::Sparse(other_sparse) => {
let (updated, changed) = dense_sparse_intersect(self_dense, other_sparse);
*self = HybridBitSet::Sparse(updated);
changed
}
HybridBitSet::Dense(other_dense) => self_dense.intersect(other_dense),
},
}
}
}
@ -441,28 +634,8 @@ fn to_dense(&self) -> BitSet<T> {
fn iter(&self) -> slice::Iter<'_, T> {
self.elems.iter()
}
}
impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
let mut changed = false;
for elem in self.iter() {
changed |= other.insert(*elem);
}
changed
}
}
impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
let mut changed = false;
for elem in self.iter() {
changed |= other.remove(*elem);
}
changed
}
bit_relations_inherent_impls! {}
}
/// A fixed-size bitset type with a hybrid representation: sparse when there
@ -579,48 +752,6 @@ pub fn remove(&mut self, elem: T) -> bool {
}
}
pub fn union(&mut self, other: &HybridBitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(self_sparse) => {
match other {
HybridBitSet::Sparse(other_sparse) => {
// Both sets are sparse. Add the elements in
// `other_sparse` to `self` one at a time. This
// may or may not cause `self` to be densified.
assert_eq!(self.domain_size(), other.domain_size());
let mut changed = false;
for elem in other_sparse.iter() {
changed |= self.insert(*elem);
}
changed
}
HybridBitSet::Dense(other_dense) => {
// `self` is sparse and `other` is dense. To
// merge them, we have two available strategies:
// * Densify `self` then merge other
// * Clone other then integrate bits from `self`
// The second strategy requires dedicated method
// since the usual `union` returns the wrong
// result. In the dedicated case the computation
// is slightly faster if the bits of the sparse
// bitset map to only few words of the dense
// representation, i.e. indices are near each
// other.
//
// Benchmarking seems to suggest that the second
// option is worth it.
let mut new_dense = other_dense.clone();
let changed = new_dense.reverse_union_sparse(self_sparse);
*self = HybridBitSet::Dense(new_dense);
changed
}
}
}
HybridBitSet::Dense(self_dense) => self_dense.union(other),
}
}
/// Converts to a dense set, consuming itself in the process.
pub fn to_dense(self) -> BitSet<T> {
match self {
@ -635,24 +766,8 @@ pub fn iter(&self) -> HybridIter<'_, T> {
HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
}
}
}
impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.union_into(other),
HybridBitSet::Dense(dense) => dense.union_into(other),
}
}
}
impl<T: Idx> SubtractFromBitSet<T> for HybridBitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.subtract_from(other),
HybridBitSet::Dense(dense) => dense.subtract_from(other),
}
}
bit_relations_inherent_impls! {}
}
pub enum HybridIter<'a, T: Idx> {
@ -974,6 +1089,26 @@ pub fn insert(&mut self, row: R, column: C) -> bool {
self.ensure_row(row).insert(column)
}
/// Sets the cell at `(row, column)` to false. Put another way, delete
/// `column` from the bitset for `row`. Has no effect if `row` does not
/// exist.
///
/// Returns `true` if this changed the matrix.
pub fn remove(&mut self, row: R, column: C) -> bool {
match self.rows.get_mut(row) {
Some(Some(row)) => row.remove(column),
_ => false,
}
}
/// Sets all columns at `row` to false. Has no effect if `row` does
/// not exist.
pub fn clear(&mut self, row: R) {
if let Some(Some(row)) = self.rows.get_mut(row) {
row.clear();
}
}
/// Do the bits from `row` contain `column`? Put another way, is
/// the matrix cell at `(row, column)` true? Put yet another way,
/// if the matrix represents (transitive) reachability, can
@ -1002,11 +1137,6 @@ pub fn union_rows(&mut self, read: R, write: R) -> bool {
}
}
/// Union a row, `from`, into the `into` row.
pub fn union_into_row(&mut self, into: R, from: &HybridBitSet<C>) -> bool {
self.ensure_row(into).union(from)
}
/// Insert all bits in the given row.
pub fn insert_all_into_row(&mut self, row: R) {
self.ensure_row(row).insert_all();
@ -1025,6 +1155,45 @@ pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
}
/// Interescts `row` with `set`. `set` can be either `BitSet` or
/// `HybridBitSet`. Has no effect if `row` does not exist.
///
/// Returns true if the row was changed.
pub fn intersect_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
match self.rows.get_mut(row) {
Some(Some(row)) => row.intersect(set),
_ => false,
}
}
/// Subtracts `set from `row`. `set` can be either `BitSet` or
/// `HybridBitSet`. Has no effect if `row` does not exist.
///
/// Returns true if the row was changed.
pub fn subtract_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
match self.rows.get_mut(row) {
Some(Some(row)) => row.subtract(set),
_ => false,
}
}
/// Unions `row` with `set`. `set` can be either `BitSet` or
/// `HybridBitSet`.
///
/// Returns true if the row was changed.
pub fn union_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
self.ensure_row(row).union(set)
}
}
#[inline]

View File

@ -104,18 +104,40 @@ fn hybrid_bitset() {
assert!(dense10.superset(&dense10)); // dense + dense (self)
assert!(dense256.superset(&dense10)); // dense + dense
let mut hybrid = sparse038;
let mut hybrid = sparse038.clone();
assert!(!sparse01358.union(&hybrid)); // no change
assert!(hybrid.union(&sparse01358));
assert!(hybrid.superset(&sparse01358) && sparse01358.superset(&hybrid));
assert!(!dense10.union(&sparse01358));
assert!(!dense256.union(&dense10));
let mut dense = dense10;
// dense / sparse where dense superset sparse
assert!(!dense10.clone().union(&sparse01358));
assert!(sparse01358.clone().union(&dense10));
assert!(dense10.clone().intersect(&sparse01358));
assert!(!sparse01358.clone().intersect(&dense10));
assert!(dense10.clone().subtract(&sparse01358));
assert!(sparse01358.clone().subtract(&dense10));
// dense / sparse where sparse superset dense
let dense038 = sparse038.to_dense();
assert!(!sparse01358.clone().union(&dense038));
assert!(dense038.clone().union(&sparse01358));
assert!(sparse01358.clone().intersect(&dense038));
assert!(!dense038.clone().intersect(&sparse01358));
assert!(sparse01358.clone().subtract(&dense038));
assert!(dense038.clone().subtract(&sparse01358));
let mut dense = dense10.clone();
assert!(dense.union(&dense256));
assert!(dense.superset(&dense256) && dense256.superset(&dense));
assert!(hybrid.union(&dense256));
assert!(hybrid.superset(&dense256) && dense256.superset(&hybrid));
assert!(!dense10.clone().intersect(&dense256));
assert!(dense256.clone().intersect(&dense10));
assert!(dense10.clone().subtract(&dense256));
assert!(dense256.clone().subtract(&dense10));
assert_eq!(dense256.iter().count(), 256);
let mut dense0 = dense256;
for i in 0..256 {
@ -282,6 +304,72 @@ fn sparse_matrix_iter() {
assert!(iter.next().is_none());
}
#[test]
fn sparse_matrix_operations() {
let mut matrix: SparseBitMatrix<usize, usize> = SparseBitMatrix::new(100);
matrix.insert(3, 22);
matrix.insert(3, 75);
matrix.insert(2, 99);
matrix.insert(4, 0);
let mut disjoint: HybridBitSet<usize> = HybridBitSet::new_empty(100);
disjoint.insert(33);
let mut superset = HybridBitSet::new_empty(100);
superset.insert(22);
superset.insert(75);
superset.insert(33);
let mut subset = HybridBitSet::new_empty(100);
subset.insert(22);
// SparseBitMatrix::remove
{
let mut matrix = matrix.clone();
matrix.remove(3, 22);
assert!(!matrix.row(3).unwrap().contains(22));
matrix.remove(0, 0);
assert!(matrix.row(0).is_none());
}
// SparseBitMatrix::clear
{
let mut matrix = matrix.clone();
matrix.clear(3);
assert!(!matrix.row(3).unwrap().contains(75));
matrix.clear(0);
assert!(matrix.row(0).is_none());
}
// SparseBitMatrix::intersect_row
{
let mut matrix = matrix.clone();
assert!(!matrix.intersect_row(3, &superset));
assert!(matrix.intersect_row(3, &subset));
matrix.intersect_row(0, &disjoint);
assert!(matrix.row(0).is_none());
}
// SparseBitMatrix::subtract_row
{
let mut matrix = matrix.clone();
assert!(!matrix.subtract_row(3, &disjoint));
assert!(matrix.subtract_row(3, &subset));
assert!(matrix.subtract_row(3, &superset));
matrix.intersect_row(0, &disjoint);
assert!(matrix.row(0).is_none());
}
// SparseBitMatrix::union_row
{
let mut matrix = matrix.clone();
assert!(!matrix.union_row(3, &subset));
assert!(matrix.union_row(3, &disjoint));
matrix.union_row(0, &disjoint);
assert!(matrix.row(0).is_some());
}
}
/// Merge dense hybrid set into empty sparse hybrid set.
#[bench]
fn union_hybrid_sparse_empty_to_dense(b: &mut Bencher) {

View File

@ -160,7 +160,7 @@ impl<N: Idx> LivenessValues<N> {
/// region. Returns whether any of them are newly added.
crate fn add_elements(&mut self, row: N, locations: &HybridBitSet<PointIndex>) -> bool {
debug!("LivenessValues::add_elements(row={:?}, locations={:?})", row, locations);
self.points.union_into_row(row, locations)
self.points.union_row(row, locations)
}
/// Adds all the control-flow points to the values for `r`.
@ -294,7 +294,7 @@ impl<N: Idx> RegionValues<N> {
/// the region `to` in `self`.
crate fn merge_liveness<M: Idx>(&mut self, to: N, from: M, values: &LivenessValues<M>) {
if let Some(set) = values.points.row(from) {
self.points.union_into_row(to, set);
self.points.union_row(to, set);
}
}

View File

@ -626,7 +626,7 @@ fn compute_storage_conflicts(
// Locals that are always live or ones that need to be stored across
// suspension points are not eligible for overlap.
let mut ineligible_locals = always_live_locals.into_inner();
ineligible_locals.intersect(saved_locals);
ineligible_locals.intersect(&**saved_locals);
// Compute the storage conflicts for all eligible locals.
let mut visitor = StorageConflictVisitor {
@ -701,7 +701,7 @@ fn apply_state(&mut self, flow_state: &BitSet<Local>, loc: Location) {
}
let mut eligible_storage_live = flow_state.clone();
eligible_storage_live.intersect(&self.saved_locals);
eligible_storage_live.intersect(&**self.saved_locals);
for local in eligible_storage_live.iter() {
self.local_conflicts.union_row_with(&eligible_storage_live, local);