implement transitive relation type that can compute transitive
closures, upper bounds, and other fun things
This commit is contained in:
parent
4756d4a635
commit
5e126e4984
@ -37,6 +37,7 @@ pub mod bitvec;
|
||||
pub mod graph;
|
||||
pub mod ivar;
|
||||
pub mod snapshot_vec;
|
||||
pub mod transitive_relation;
|
||||
pub mod unify;
|
||||
|
||||
// See comments in src/librustc/lib.rs
|
||||
|
463
src/librustc_data_structures/transitive_relation.rs
Normal file
463
src/librustc_data_structures/transitive_relation.rs
Normal file
@ -0,0 +1,463 @@
|
||||
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
use bitvec::BitMatrix;
|
||||
use std::cell::RefCell;
|
||||
use std::fmt::Debug;
|
||||
use std::mem;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct TransitiveRelation<T:Debug+PartialEq> {
|
||||
// List of elements. This is used to map from a T to a usize. We
|
||||
// expect domain to be small so just use a linear list versus a
|
||||
// hashmap or something.
|
||||
elements: Vec<T>,
|
||||
|
||||
// List of base edges in the graph. Require to compute transitive
|
||||
// closure.
|
||||
edges: Vec<Edge>,
|
||||
|
||||
// This is a cached transitive closure derived from the edges.
|
||||
// Currently, we build it lazilly and just throw out any existing
|
||||
// copy whenever a new edge is added. (The RefCell is to permit
|
||||
// the lazy computation.) This is kind of silly, except for the
|
||||
// fact its size is tied to `self.elements.len()`, so I wanted to
|
||||
// wait before building it up to avoid reallocating as new edges
|
||||
// are added with new elements. Perhaps better would be to ask the
|
||||
// user for a batch of edges to minimize this effect, but I
|
||||
// already wrote the code this way. :P -nmatsakis
|
||||
closure: RefCell<Option<BitMatrix>>
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, PartialOrd)]
|
||||
struct Index(usize);
|
||||
|
||||
#[derive(Clone, PartialEq)]
|
||||
struct Edge {
|
||||
source: Index,
|
||||
target: Index,
|
||||
}
|
||||
|
||||
impl<T:Debug+PartialEq> TransitiveRelation<T> {
|
||||
pub fn new() -> TransitiveRelation<T> {
|
||||
TransitiveRelation { elements: vec![],
|
||||
edges: vec![],
|
||||
closure: RefCell::new(None) }
|
||||
}
|
||||
|
||||
fn index(&self, a: &T) -> Option<Index> {
|
||||
self.elements.iter().position(|e| *e == *a).map(Index)
|
||||
}
|
||||
|
||||
fn add_index(&mut self, a: T) -> Index {
|
||||
match self.index(&a) {
|
||||
Some(i) => i,
|
||||
None => {
|
||||
self.elements.push(a);
|
||||
Index(self.elements.len() - 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Indicate that `a < b` (where `<` is this relation)
|
||||
pub fn add(&mut self, a: T, b: T) {
|
||||
let a = self.add_index(a);
|
||||
let b = self.add_index(b);
|
||||
let edge = Edge { source: a, target: b };
|
||||
if !self.edges.contains(&edge) {
|
||||
self.edges.push(edge);
|
||||
}
|
||||
|
||||
// clear cached closure, if any
|
||||
*self.closure.borrow_mut() = None;
|
||||
}
|
||||
|
||||
/// Check whether `a < target` (transitively)
|
||||
pub fn contains(&self, a: &T, b: &T) -> bool {
|
||||
match (self.index(a), self.index(b)) {
|
||||
(Some(a), Some(b)) =>
|
||||
self.take_closure(|closure| closure.contains(a.0, b.0)),
|
||||
(None, _) | (_, None) =>
|
||||
false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Picks what I am referring to as the "best" upper-bound for `a`
|
||||
/// and `b`. This is usually the least upper bound, but in cases where
|
||||
/// there is no single least upper bound, it is the "mutual immediate postdominator",
|
||||
/// if you imagine a graph where `a < b` means `a -> b`.
|
||||
///
|
||||
/// This function is needed because region inference currently
|
||||
/// requires that we produce a single "UB", and there is no best
|
||||
/// choice for the LUB. Rather than pick arbitrarily, I pick a
|
||||
/// less good, but predictable choice. This should help ensure
|
||||
/// that region inference yields predictable results (though it
|
||||
/// itself is not fully sufficient).
|
||||
///
|
||||
/// Examples are probably clearer than any prose I could write
|
||||
/// (there are corresponding tests below, btw):
|
||||
///
|
||||
/// ```
|
||||
/// // returns Some(x), which is also LUB
|
||||
/// a -> a1 -> x
|
||||
/// ^
|
||||
/// |
|
||||
/// b -> b1 ---+
|
||||
///
|
||||
/// // returns Some(x), which is not LUB (there is none)
|
||||
/// a -> a1 -> x
|
||||
/// \/ ^
|
||||
/// /\ |
|
||||
/// b -> b1 ---+
|
||||
///
|
||||
/// // returns None
|
||||
/// a -> a1
|
||||
/// b -> b1
|
||||
/// ```
|
||||
pub fn best_upper_bound(&self, a: &T, b: &T) -> Option<&T> {
|
||||
let mut mubs = self.minimal_upper_bounds(a, b);
|
||||
loop {
|
||||
match mubs.len() {
|
||||
0 => return None,
|
||||
1 => return Some(mubs[0]),
|
||||
_ => {
|
||||
let m = mubs.pop().unwrap();
|
||||
let n = mubs.pop().unwrap();
|
||||
mubs.extend(self.minimal_upper_bounds(n, m));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the set of bounds `X` such that:
|
||||
///
|
||||
/// - `a < X` and `b < X`
|
||||
/// - there is no `Y` such that `a < Y` and `Y < X`
|
||||
///
|
||||
/// Note that this set can, in principle, have any size.
|
||||
pub fn minimal_upper_bounds(&self, a: &T, b: &T) -> Vec<&T> {
|
||||
let (mut a, mut b) = match (self.index(a), self.index(b)) {
|
||||
(Some(a), Some(b)) => (a, b),
|
||||
(None, _) | (_, None) => { return vec![]; }
|
||||
};
|
||||
|
||||
// in some cases, there are some arbitrary choices to be made;
|
||||
// it doesn't really matter what we pick, as long as we pick
|
||||
// the same thing consistently when queried, so ensure that
|
||||
// (a, b) are in a consistent relative order
|
||||
if a > b {
|
||||
mem::swap(&mut a, &mut b);
|
||||
}
|
||||
|
||||
let lub_indices = self.take_closure(|closure| {
|
||||
// Easy case is when either a < b or b < a:
|
||||
if closure.contains(a.0, b.0) {
|
||||
return vec![b.0];
|
||||
}
|
||||
if closure.contains(b.0, a.0) {
|
||||
return vec![a.0];
|
||||
}
|
||||
|
||||
// Otherwise, the tricky part is that there may be some c
|
||||
// where a < c and b < c. In fact, there may be many such
|
||||
// values. So here is what we do:
|
||||
//
|
||||
// 1. Find the vector `[X | a < X && b < X]` of all values
|
||||
// `X` where `a < X` and `b < X`. In terms of the
|
||||
// graph, this means all values reachable from both `a`
|
||||
// and `b`. Note that this vector is also a set, but we
|
||||
// use the term vector because the order matters
|
||||
// to the steps below.
|
||||
// - This vector contains upper bounds, but they are
|
||||
// not minimal upper bounds. So you may have e.g.
|
||||
// `[a, b, tcx, x]` where `a < tcx` and `b < tcx` and
|
||||
// `x < a` and `x < b`. This could be reduced to
|
||||
// just `[x]`.
|
||||
// 2. Pare down the vector using `pare_down`. This will
|
||||
// remove elements from the vector that can be reached
|
||||
// by an earlier element.
|
||||
// - In the example above, this would convert
|
||||
// `[a, b, tcx, x]` to `[a, b, x]`. Note that `x`
|
||||
// remains because `x < a` but not `a < x.`
|
||||
// 3. Reverse the vector and repeat the pare down process.
|
||||
// - In the example above, we would reverse to
|
||||
// `[x, b, a]` and then pare down to `[x]`.
|
||||
// 4. Reverse once more just so that we yield a vector in
|
||||
// increasing order of index. Maybe this is silly.
|
||||
//
|
||||
// I believe this algorithm yields a minimal set. The
|
||||
// argument is that, after step 2, we know that no element
|
||||
// can reach its successors (in the vector, not the graph).
|
||||
// After step 3, we know that no element can reach any of
|
||||
// its predecesssors (because of step 2) nor successors
|
||||
// (because we just called `pare_down`)
|
||||
|
||||
let mut candidates = closure.intersection(a.0, b.0); // (1)
|
||||
pare_down(&mut candidates, closure); // (2)
|
||||
candidates.reverse(); // (3a)
|
||||
pare_down(&mut candidates, closure); // (3b)
|
||||
candidates.reverse(); // (4)
|
||||
candidates
|
||||
});
|
||||
|
||||
lub_indices.into_iter()
|
||||
.map(|i| &self.elements[i])
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn take_closure<OP,R>(&self, op: OP) -> R
|
||||
where OP: FnOnce(&BitMatrix) -> R
|
||||
{
|
||||
let mut closure_cell = self.closure.borrow_mut();
|
||||
let mut closure = closure_cell.take();
|
||||
if closure.is_none() {
|
||||
closure = Some(self.compute_closure());
|
||||
}
|
||||
let result = op(closure.as_ref().unwrap());
|
||||
*closure_cell = closure;
|
||||
result
|
||||
}
|
||||
|
||||
fn compute_closure(&self) -> BitMatrix {
|
||||
let mut matrix = BitMatrix::new(self.elements.len());
|
||||
let mut changed = true;
|
||||
while changed {
|
||||
changed = false;
|
||||
for edge in self.edges.iter() {
|
||||
// add an edge from S -> T
|
||||
changed |= matrix.add(edge.source.0, edge.target.0);
|
||||
|
||||
// add all outgoing edges from T into S
|
||||
changed |= matrix.merge(edge.target.0, edge.source.0);
|
||||
}
|
||||
}
|
||||
matrix
|
||||
}
|
||||
}
|
||||
|
||||
/// Pare down is used as a step in the LUB computation. It edits the
|
||||
/// candidates array in place by removing any element j for which
|
||||
/// there exists an earlier element i<j such that i -> j. That is,
|
||||
/// after you run `pare_down`, you know that for all elements that
|
||||
/// remain in candidates, they cannot reach any of the elements that
|
||||
/// come after them.
|
||||
///
|
||||
/// Examples follow. Assume that a -> b -> c and x -> y -> z.
|
||||
///
|
||||
/// - Input: `[a, b, x]`. Output: `[a, x]`.
|
||||
/// - Input: `[b, a, x]`. Output: `[b, a, x]`.
|
||||
/// - Input: `[a, x, b, y]`. Output: `[a, x]`.
|
||||
fn pare_down(candidates: &mut Vec<usize>, closure: &BitMatrix) {
|
||||
let mut i = 0;
|
||||
while i < candidates.len() {
|
||||
let candidate = candidates[i];
|
||||
i += 1;
|
||||
|
||||
let mut j = i;
|
||||
while j < candidates.len() {
|
||||
if closure.contains(candidate, candidates[j]) {
|
||||
// if i can reach j, then we can remove j
|
||||
println!("pare_down: candidates[{:?}]={:?} candidates[{:?}] = {:?}",
|
||||
i-1, candidate, j, candidates[j]);
|
||||
candidates.swap_remove(j);
|
||||
} else {
|
||||
j += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_one_step() {
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "b");
|
||||
relation.add("a", "c");
|
||||
assert!(relation.contains(&"a", &"c"));
|
||||
assert!(relation.contains(&"a", &"b"));
|
||||
assert!(!relation.contains(&"b", &"a"));
|
||||
assert!(!relation.contains(&"a", &"d"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_many_steps() {
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "b");
|
||||
relation.add("a", "c");
|
||||
relation.add("a", "f");
|
||||
|
||||
relation.add("b", "c");
|
||||
relation.add("b", "d");
|
||||
relation.add("b", "e");
|
||||
|
||||
relation.add("e", "g");
|
||||
|
||||
assert!(relation.contains(&"a", &"b"));
|
||||
assert!(relation.contains(&"a", &"c"));
|
||||
assert!(relation.contains(&"a", &"d"));
|
||||
assert!(relation.contains(&"a", &"e"));
|
||||
assert!(relation.contains(&"a", &"f"));
|
||||
assert!(relation.contains(&"a", &"g"));
|
||||
|
||||
assert!(relation.contains(&"b", &"g"));
|
||||
|
||||
assert!(!relation.contains(&"a", &"x"));
|
||||
assert!(!relation.contains(&"b", &"f"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn mubs_triange() {
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "tcx");
|
||||
relation.add("b", "tcx");
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"tcx"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn mubs_best_choice1() {
|
||||
// 0 -> 1 <- 3
|
||||
// | ^ |
|
||||
// | | |
|
||||
// +--> 2 <--+
|
||||
//
|
||||
// mubs(0,3) = [1]
|
||||
|
||||
// This tests a particular state in the algorithm, in which we
|
||||
// need the second pare down call to get the right result (after
|
||||
// intersection, we have [1, 2], but 2 -> 1).
|
||||
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("0", "1");
|
||||
relation.add("0", "2");
|
||||
|
||||
relation.add("2", "1");
|
||||
|
||||
relation.add("3", "1");
|
||||
relation.add("3", "2");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"2"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn mubs_best_choice2() {
|
||||
// 0 -> 1 <- 3
|
||||
// | | |
|
||||
// | v |
|
||||
// +--> 2 <--+
|
||||
//
|
||||
// mubs(0,3) = [2]
|
||||
|
||||
// Like the precedecing test, but in this case intersection is [2,
|
||||
// 1], and hence we rely on the first pare down call.
|
||||
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("0", "1");
|
||||
relation.add("0", "2");
|
||||
|
||||
relation.add("1", "2");
|
||||
|
||||
relation.add("3", "1");
|
||||
relation.add("3", "2");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn mubs_no_best_choice() {
|
||||
// in this case, the intersection yields [1, 2],
|
||||
// and we need the first "pare down" call to narrow
|
||||
// this down to [2]
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("0", "1");
|
||||
relation.add("0", "2");
|
||||
|
||||
relation.add("3", "1");
|
||||
relation.add("3", "2");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1", &"2"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn mubs_best_choice_scc() {
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("0", "1");
|
||||
relation.add("0", "2");
|
||||
|
||||
relation.add("1", "2");
|
||||
relation.add("2", "1");
|
||||
|
||||
relation.add("3", "1");
|
||||
relation.add("3", "2");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bub_crisscross() {
|
||||
// a -> a1 -> x
|
||||
// \/ ^
|
||||
// /\ |
|
||||
// b -> b1 ---+
|
||||
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "a1");
|
||||
relation.add("a", "b1");
|
||||
relation.add("b", "a1");
|
||||
relation.add("b", "b1");
|
||||
relation.add("a1", "x");
|
||||
relation.add("b1", "x");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"a1", &"b1"]);
|
||||
assert_eq!(relation.best_upper_bound(&"a", &"b"), Some(&"x"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bub_crisscross_more() {
|
||||
// a -> a1 -> a2 -> a3 -> x
|
||||
// \/ \/ ^
|
||||
// /\ /\ |
|
||||
// b -> b1 -> b2 ---------+
|
||||
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "a1");
|
||||
relation.add("a", "b1");
|
||||
relation.add("b", "a1");
|
||||
relation.add("b", "b1");
|
||||
|
||||
relation.add("a1", "a2");
|
||||
relation.add("a1", "b2");
|
||||
relation.add("b1", "a2");
|
||||
relation.add("b1", "b2");
|
||||
|
||||
relation.add("a2", "a3");
|
||||
|
||||
relation.add("a3", "x");
|
||||
relation.add("b2", "x");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"a1", &"b1"]);
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a1", &"b1"), vec![&"a2", &"b2"]);
|
||||
assert_eq!(relation.best_upper_bound(&"a", &"b"), Some(&"x"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bub_lub() {
|
||||
// a -> a1 -> x
|
||||
// ^
|
||||
// |
|
||||
// b -> b1 ---+
|
||||
|
||||
let mut relation = TransitiveRelation::new();
|
||||
relation.add("a", "a1");
|
||||
relation.add("b", "b1");
|
||||
relation.add("a1", "x");
|
||||
relation.add("b1", "x");
|
||||
|
||||
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"x"]);
|
||||
assert_eq!(relation.best_upper_bound(&"a", &"b"), Some(&"x"));
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user