use instantiate_ty_var in nll

we already use `instantiate_const_var`. This does lose some debugging
info for nll because we stop populating the `reg_var_to_origin` table with
`RegionCtxt::Existential(None)`, I don't think that matters however.
Supporting this adds additional complexity to one of the most involved
parts of the type system, so I really don't think it's worth it.
This commit is contained in:
lcnr 2024-02-17 02:32:19 +01:00
parent 88a559fa9f
commit 5c540044d6
6 changed files with 48 additions and 222 deletions

View File

@ -143,22 +143,6 @@ fn next_placeholder_region(&mut self, placeholder: ty::PlaceholderRegion) -> ty:
reg
}
#[instrument(skip(self), level = "debug")]
fn generalize_existential(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx> {
let reg = self.type_checker.infcx.next_nll_region_var_in_universe(
NllRegionVariableOrigin::Existential { from_forall: false },
universe,
);
if cfg!(debug_assertions) {
let mut var_to_origin = self.type_checker.infcx.reg_var_to_origin.borrow_mut();
let prev = var_to_origin.insert(reg.as_var(), RegionCtxt::Existential(None));
assert_eq!(prev, None);
}
reg
}
fn push_outlives(
&mut self,
sup: ty::Region<'tcx>,

View File

@ -731,13 +731,6 @@ fn next_placeholder_region(&mut self, placeholder: ty::PlaceholderRegion) -> ty:
ty::Region::new_placeholder(self.infcx.tcx, placeholder)
}
fn generalize_existential(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx> {
self.infcx.next_nll_region_var_in_universe(
NllRegionVariableOrigin::Existential { from_forall: false },
universe,
)
}
fn push_outlives(
&mut self,
sup: ty::Region<'tcx>,

View File

@ -3,7 +3,7 @@
pub(super) mod combine;
mod equate;
pub(super) mod generalize;
mod generalize;
mod glb;
mod higher_ranked;
mod lattice;

View File

@ -25,13 +25,11 @@
use rustc_middle::traits::ObligationCause;
use rustc_middle::ty::fold::FnMutDelegate;
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::TypeVisitableExt;
use rustc_middle::ty::{self, InferConst, Ty, TyCtxt};
use rustc_span::{Span, Symbol};
use std::fmt::Debug;
use super::combine::ObligationEmittingRelation;
use super::generalize::{self, Generalization};
use crate::infer::InferCtxt;
use crate::infer::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::traits::{Obligation, PredicateObligations};
@ -99,15 +97,6 @@ fn next_existential_region_var(
/// placeholder region.
fn next_placeholder_region(&mut self, placeholder: ty::PlaceholderRegion) -> ty::Region<'tcx>;
/// Creates a new existential region in the given universe. This
/// is used when handling subtyping and type variables -- if we
/// have that `?X <: Foo<'a>`, for example, we would instantiate
/// `?X` with a type like `Foo<'?0>` where `'?0` is a fresh
/// existential variable created by this function. We would then
/// relate `Foo<'?0>` with `Foo<'a>` (and probably add an outlives
/// relation stating that `'?0: 'a`).
fn generalize_existential(&mut self, universe: ty::UniverseIndex) -> ty::Region<'tcx>;
/// Enables some optimizations if we do not expect inference variables
/// in the RHS of the relation.
fn forbid_inference_vars() -> bool;
@ -153,113 +142,44 @@ fn push_outlives(
self.delegate.push_outlives(sup, sub, info);
}
/// Relate a type inference variable with a value type. This works
/// by creating a "generalization" G of the value where all the
/// lifetimes are replaced with fresh inference values. This
/// generalization G becomes the value of the inference variable,
/// and is then related in turn to the value. So e.g. if you had
/// `vid = ?0` and `value = &'a u32`, we might first instantiate
/// `?0` to a type like `&'0 u32` where `'0` is a fresh variable,
/// and then relate `&'0 u32` with `&'a u32` (resulting in
/// relations between `'0` and `'a`).
///
/// The variable `pair` can be either a `(vid, ty)` or `(ty, vid)`
/// -- in other words, it is always an (unresolved) inference
/// variable `vid` and a type `ty` that are being related, but the
/// vid may appear either as the "a" type or the "b" type,
/// depending on where it appears in the tuple. The trait
/// `VidValuePair` lets us work with the vid/type while preserving
/// the "sidedness" when necessary -- the sidedness is relevant in
/// particular for the variance and set of in-scope things.
fn relate_ty_var<PAIR: VidValuePair<'tcx>>(
&mut self,
pair: PAIR,
) -> RelateResult<'tcx, Ty<'tcx>> {
debug!("relate_ty_var({:?})", pair);
let vid = pair.vid();
let value_ty = pair.value_ty();
// FIXME(invariance) -- this logic assumes invariance, but that is wrong.
// This only presently applies to chalk integration, as NLL
// doesn't permit type variables to appear on both sides (and
// doesn't use lazy norm).
match *value_ty.kind() {
ty::Infer(ty::TyVar(value_vid)) => {
// Two type variables: just equate them.
self.infcx.inner.borrow_mut().type_variables().equate(vid, value_vid);
return Ok(value_ty);
}
_ => (),
}
let generalized_ty = self.generalize(value_ty, vid)?;
debug!("relate_ty_var: generalized_ty = {:?}", generalized_ty);
if D::forbid_inference_vars() {
// In NLL, we don't have type inference variables
// floating around, so we can do this rather imprecise
// variant of the occurs-check.
assert!(!generalized_ty.has_non_region_infer());
}
self.infcx.inner.borrow_mut().type_variables().instantiate(vid, generalized_ty);
// Relate the generalized kind to the original one.
let result = pair.relate_generalized_ty(self, generalized_ty);
debug!("relate_ty_var: complete, result = {:?}", result);
result
}
fn generalize(&mut self, ty: Ty<'tcx>, for_vid: ty::TyVid) -> RelateResult<'tcx, Ty<'tcx>> {
let Generalization { value_may_be_infer: ty, has_unconstrained_ty_var: _ } =
generalize::generalize(
self.infcx,
&mut self.delegate,
ty,
for_vid,
self.ambient_variance,
)?;
if ty.is_ty_var() {
span_bug!(self.delegate.span(), "occurs check failure in MIR typeck");
}
Ok(ty)
}
fn relate_opaques(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
fn relate_opaques(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()> {
let infcx = self.infcx;
debug_assert!(!infcx.next_trait_solver());
let (a, b) = if self.a_is_expected() { (a, b) } else { (b, a) };
let mut generalize = |ty, ty_is_expected| {
let var = self.infcx.next_ty_var_id_in_universe(
// `handle_opaque_type` cannot handle subtyping, so to support subtyping
// we instead eagerly generalize here. This is a bit of a mess but will go
// away once we're using the new solver.
let mut enable_subtyping = |ty, ty_is_expected| {
let ty_vid = infcx.next_ty_var_id_in_universe(
TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: self.delegate.span(),
},
ty::UniverseIndex::ROOT,
);
if ty_is_expected {
self.relate_ty_var((ty, var))
let variance = if ty_is_expected {
self.ambient_variance
} else {
self.relate_ty_var((var, ty))
}
self.ambient_variance.xform(ty::Contravariant)
};
self.infcx.instantiate_ty_var(self, ty_is_expected, ty_vid, variance, ty)?;
Ok(infcx.resolve_vars_if_possible(Ty::new_infer(infcx.tcx, ty::TyVar(ty_vid))))
};
let (a, b) = match (a.kind(), b.kind()) {
(&ty::Alias(ty::Opaque, ..), _) => (a, generalize(b, false)?),
(_, &ty::Alias(ty::Opaque, ..)) => (generalize(a, true)?, b),
(&ty::Alias(ty::Opaque, ..), _) => (a, enable_subtyping(b, false)?),
(_, &ty::Alias(ty::Opaque, ..)) => (enable_subtyping(a, true)?, b),
_ => unreachable!(
"expected at least one opaque type in `relate_opaques`, got {a} and {b}."
),
};
let cause = ObligationCause::dummy_with_span(self.delegate.span());
let obligations = self
.infcx
.handle_opaque_type(a, b, true, &cause, self.delegate.param_env())?
.obligations;
let obligations =
infcx.handle_opaque_type(a, b, true, &cause, self.delegate.param_env())?.obligations;
self.delegate.register_obligations(obligations);
trace!(a = ?a.kind(), b = ?b.kind(), "opaque type instantiated");
Ok(a)
Ok(())
}
fn enter_forall<T, U>(
@ -357,76 +277,6 @@ fn instantiate_binder_with_existentials<T>(&mut self, binder: ty::Binder<'tcx, T
}
}
/// When we instantiate an inference variable with a value in
/// `relate_ty_var`, we always have the pair of a `TyVid` and a `Ty`,
/// but the ordering may vary (depending on whether the inference
/// variable was found on the `a` or `b` sides). Therefore, this trait
/// allows us to factor out common code, while preserving the order
/// when needed.
trait VidValuePair<'tcx>: Debug {
/// Extract the inference variable (which could be either the
/// first or second part of the tuple).
fn vid(&self) -> ty::TyVid;
/// Extract the value it is being related to (which will be the
/// opposite part of the tuple from the vid).
fn value_ty(&self) -> Ty<'tcx>;
/// Given a generalized type G that should replace the vid, relate
/// G to the value, putting G on whichever side the vid would have
/// appeared.
fn relate_generalized_ty<D>(
&self,
relate: &mut TypeRelating<'_, 'tcx, D>,
generalized_ty: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
D: TypeRelatingDelegate<'tcx>;
}
impl<'tcx> VidValuePair<'tcx> for (ty::TyVid, Ty<'tcx>) {
fn vid(&self) -> ty::TyVid {
self.0
}
fn value_ty(&self) -> Ty<'tcx> {
self.1
}
fn relate_generalized_ty<D>(
&self,
relate: &mut TypeRelating<'_, 'tcx, D>,
generalized_ty: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
D: TypeRelatingDelegate<'tcx>,
{
relate.relate(generalized_ty, self.value_ty())
}
}
// In this case, the "vid" is the "b" type.
impl<'tcx> VidValuePair<'tcx> for (Ty<'tcx>, ty::TyVid) {
fn vid(&self) -> ty::TyVid {
self.1
}
fn value_ty(&self) -> Ty<'tcx> {
self.0
}
fn relate_generalized_ty<D>(
&self,
relate: &mut TypeRelating<'_, 'tcx, D>,
generalized_ty: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
D: TypeRelatingDelegate<'tcx>,
{
relate.relate(self.value_ty(), generalized_ty)
}
}
impl<'tcx, D> TypeRelation<'tcx> for TypeRelating<'_, 'tcx, D>
where
D: TypeRelatingDelegate<'tcx>,
@ -473,6 +323,8 @@ fn tys(&mut self, a: Ty<'tcx>, mut b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>
if !D::forbid_inference_vars() {
b = self.infcx.shallow_resolve(b);
} else {
assert!(!b.has_non_region_infer(), "unexpected inference var {:?}", b);
}
if a == b {
@ -480,22 +332,30 @@ fn tys(&mut self, a: Ty<'tcx>, mut b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>
}
match (a.kind(), b.kind()) {
(_, &ty::Infer(ty::TyVar(vid))) => {
if D::forbid_inference_vars() {
// Forbid inference variables in the RHS.
bug!("unexpected inference var {:?}", b)
} else {
self.relate_ty_var((a, vid))
(&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
match self.ambient_variance {
ty::Invariant => infcx.inner.borrow_mut().type_variables().equate(a_vid, b_vid),
_ => unimplemented!(),
}
}
(&ty::Infer(ty::TyVar(vid)), _) => self.relate_ty_var((vid, b)),
(&ty::Infer(ty::TyVar(a_vid)), _) => {
infcx.instantiate_ty_var(self, true, a_vid, self.ambient_variance, b)?
}
(_, &ty::Infer(ty::TyVar(b_vid))) => infcx.instantiate_ty_var(
self,
false,
b_vid,
self.ambient_variance.xform(ty::Contravariant),
a,
)?,
(
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if a_def_id == b_def_id || infcx.next_trait_solver() => {
infcx.super_combine_tys(self, a, b).or_else(|err| {
infcx.super_combine_tys(self, a, b).map(|_| ()).or_else(|err| {
// This behavior is only there for the old solver, the new solver
// shouldn't ever fail. Instead, it unconditionally emits an
// alias-relate goal.
@ -505,22 +365,24 @@ fn tys(&mut self, a: Ty<'tcx>, mut b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>>
"failure to relate an opaque to itself should result in an error later on",
);
if a_def_id.is_local() { self.relate_opaques(a, b) } else { Err(err) }
})
})?;
}
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
if def_id.is_local() && !self.infcx.next_trait_solver() =>
{
self.relate_opaques(a, b)
self.relate_opaques(a, b)?;
}
_ => {
debug!(?a, ?b, ?self.ambient_variance);
// Will also handle unification of `IntVar` and `FloatVar`.
self.infcx.super_combine_tys(self, a, b)
self.infcx.super_combine_tys(self, a, b)?;
}
}
Ok(a)
}
#[instrument(skip(self), level = "trace")]

View File

@ -5,7 +5,6 @@ fn test<'a: 'a>(n: bool) -> impl Sized + 'a {
let true = n else { loop {} };
let _ = || {
let _ = identity::<&'a ()>(test(false));
//~^ ERROR hidden type for `impl Sized + 'a` captures lifetime that does not appear in bounds
};
loop {}
}

View File

@ -1,14 +1,3 @@
error[E0700]: hidden type for `impl Sized + 'a` captures lifetime that does not appear in bounds
--> $DIR/early_bound.rs:7:17
|
LL | fn test<'a: 'a>(n: bool) -> impl Sized + 'a {
| -- --------------- opaque type defined here
| |
| hidden type `&'a ()` captures the lifetime `'a` as defined here
...
LL | let _ = identity::<&'a ()>(test(false));
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
error: concrete type differs from previous defining opaque type use
--> $DIR/early_bound.rs:3:29
|
@ -21,6 +10,5 @@ note: previous use here
LL | let _ = identity::<&'a ()>(test(false));
| ^^^^^^^^^^^
error: aborting due to 2 previous errors
error: aborting due to 1 previous error
For more information about this error, try `rustc --explain E0700`.