handle string literals correctly in match checking

The root of the problem is that a string literal pattern is essentially of
the form `&LITERAL`, in a single block, while match checking wants to
split that.

To fix that, I added a type field to the patterns in match checking,
which allows us to distinguish between a full and split pattern.

That file is ugly and needs to be cleaned. However, `trans::_match` calls
it, so I think we should delay the cleanup until we kill that.

Fixes #30240
This commit is contained in:
Ariel Ben-Yehuda 2016-06-05 23:56:11 +03:00
parent 1a614f8568
commit 5af5f26753
4 changed files with 162 additions and 79 deletions

View File

@ -49,7 +49,7 @@ pub const DUMMY_WILD_PAT: &'static Pat = &Pat {
span: DUMMY_SP
};
struct Matrix<'a>(Vec<Vec<&'a Pat>>);
struct Matrix<'a, 'tcx>(Vec<Vec<(&'a Pat, Option<Ty<'tcx>>)>>);
/// Pretty-printer for matrices of patterns, example:
/// ++++++++++++++++++++++++++
@ -63,14 +63,14 @@ struct Matrix<'a>(Vec<Vec<&'a Pat>>);
/// ++++++++++++++++++++++++++
/// + _ + [_, _, ..tail] +
/// ++++++++++++++++++++++++++
impl<'a> fmt::Debug for Matrix<'a> {
impl<'a, 'tcx> fmt::Debug for Matrix<'a, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "\n")?;
let &Matrix(ref m) = self;
let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
row.iter()
.map(|&pat| pat_to_string(&pat))
.map(|&(pat,ty)| format!("{}: {:?}", pat_to_string(&pat), ty))
.collect::<Vec<String>>()
}).collect();
@ -97,8 +97,10 @@ impl<'a> fmt::Debug for Matrix<'a> {
}
}
impl<'a> FromIterator<Vec<&'a Pat>> for Matrix<'a> {
fn from_iter<T: IntoIterator<Item=Vec<&'a Pat>>>(iter: T) -> Matrix<'a> {
impl<'a, 'tcx> FromIterator<Vec<(&'a Pat, Option<Ty<'tcx>>)>> for Matrix<'a, 'tcx> {
fn from_iter<T: IntoIterator<Item=Vec<(&'a Pat, Option<Ty<'tcx>>)>>>(iter: T)
-> Self
{
Matrix(iter.into_iter().collect())
}
}
@ -229,7 +231,7 @@ fn check_expr(cx: &mut MatchCheckCtxt, ex: &hir::Expr) {
.iter()
.filter(|&&(_, guard)| guard.is_none())
.flat_map(|arm| &arm.0)
.map(|pat| vec![&**pat])
.map(|pat| vec![wrap_pat(cx, &pat)])
.collect();
check_exhaustive(cx, ex.span, &matrix, source);
},
@ -301,7 +303,7 @@ fn check_arms(cx: &MatchCheckCtxt,
let mut printed_if_let_err = false;
for &(ref pats, guard) in arms {
for pat in pats {
let v = vec![&**pat];
let v = vec![wrap_pat(cx, &pat)];
match is_useful(cx, &seen, &v[..], LeaveOutWitness) {
NotUseful => {
@ -341,8 +343,9 @@ fn check_arms(cx: &MatchCheckCtxt,
"unreachable pattern");
// if we had a catchall pattern, hint at that
for row in &seen.0 {
if pat_is_catchall(&cx.tcx.def_map.borrow(), row[0]) {
span_note!(err, row[0].span, "this pattern matches any value");
if pat_is_catchall(&cx.tcx.def_map.borrow(), row[0].0) {
span_note!(err, row[0].0.span,
"this pattern matches any value");
}
}
err.emit();
@ -383,13 +386,16 @@ fn raw_pat(p: &Pat) -> &Pat {
}
}
fn check_exhaustive(cx: &MatchCheckCtxt, sp: Span, matrix: &Matrix, source: hir::MatchSource) {
match is_useful(cx, matrix, &[DUMMY_WILD_PAT], ConstructWitness) {
fn check_exhaustive<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>,
sp: Span,
matrix: &Matrix<'a, 'tcx>,
source: hir::MatchSource) {
match is_useful(cx, matrix, &[(DUMMY_WILD_PAT, None)], ConstructWitness) {
UsefulWithWitness(pats) => {
let witnesses = if pats.is_empty() {
vec![DUMMY_WILD_PAT]
} else {
pats.iter().map(|w| &**w ).collect()
pats.iter().map(|w| &**w).collect()
};
match source {
hir::MatchSource::ForLoopDesugar => {
@ -631,7 +637,7 @@ impl Constructor {
fn missing_constructors(cx: &MatchCheckCtxt, &Matrix(ref rows): &Matrix,
left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
let used_constructors: Vec<Constructor> = rows.iter()
.flat_map(|row| pat_constructors(cx, row[0], left_ty, max_slice_length))
.flat_map(|row| pat_constructors(cx, row[0].0, left_ty, max_slice_length))
.collect();
all_constructors(cx, left_ty, max_slice_length)
.into_iter()
@ -668,13 +674,13 @@ fn all_constructors(_cx: &MatchCheckCtxt, left_ty: Ty,
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
fn is_useful(cx: &MatchCheckCtxt,
matrix: &Matrix,
v: &[&Pat],
witness: WitnessPreference)
-> Usefulness {
fn is_useful<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>,
matrix: &Matrix<'a, 'tcx>,
v: &[(&Pat, Option<Ty<'tcx>>)],
witness: WitnessPreference)
-> Usefulness {
let &Matrix(ref rows) = matrix;
debug!("{:?}", matrix);
debug!("is_useful({:?}, {:?})", matrix, v);
if rows.is_empty() {
return match witness {
ConstructWitness => UsefulWithWitness(vec!()),
@ -685,32 +691,25 @@ fn is_useful(cx: &MatchCheckCtxt,
return NotUseful;
}
assert!(rows.iter().all(|r| r.len() == v.len()));
let real_pat = match rows.iter().find(|r| (*r)[0].id != DUMMY_NODE_ID) {
Some(r) => raw_pat(r[0]),
None if v.is_empty() => return NotUseful,
None => v[0]
};
let left_ty = if real_pat.id == DUMMY_NODE_ID {
cx.tcx.mk_nil()
} else {
let left_ty = cx.tcx.pat_ty(&real_pat);
match real_pat.node {
PatKind::Binding(hir::BindByRef(..), _, _) => {
left_ty.builtin_deref(false, NoPreference).unwrap().ty
}
_ => left_ty,
let left_ty = match rows.iter().filter_map(|r| r[0].1).next().or_else(|| v[0].1) {
Some(ty) => ty,
None => {
// all patterns are wildcards - we can pick any type we want
cx.tcx.types.bool
}
};
let max_slice_length = rows.iter().filter_map(|row| match row[0].node {
let max_slice_length = rows.iter().filter_map(|row| match row[0].0.node {
PatKind::Vec(ref before, _, ref after) => Some(before.len() + after.len()),
_ => None
}).max().map_or(0, |v| v + 1);
let constructors = pat_constructors(cx, v[0], left_ty, max_slice_length);
let constructors = pat_constructors(cx, v[0].0, left_ty, max_slice_length);
debug!("is_useful - pat_constructors = {:?} left_ty = {:?}", constructors,
left_ty);
if constructors.is_empty() {
let constructors = missing_constructors(cx, matrix, left_ty, max_slice_length);
debug!("is_useful - missing_constructors = {:?}", constructors);
if constructors.is_empty() {
all_constructors(cx, left_ty, max_slice_length).into_iter().map(|c| {
match is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) {
@ -731,7 +730,7 @@ fn is_useful(cx: &MatchCheckCtxt,
}).find(|result| result != &NotUseful).unwrap_or(NotUseful)
} else {
let matrix = rows.iter().filter_map(|r| {
match raw_pat(r[0]).node {
match raw_pat(r[0].0).node {
PatKind::Binding(..) | PatKind::Wild => Some(r[1..].to_vec()),
_ => None,
}
@ -756,9 +755,14 @@ fn is_useful(cx: &MatchCheckCtxt,
}
}
fn is_useful_specialized(cx: &MatchCheckCtxt, &Matrix(ref m): &Matrix,
v: &[&Pat], ctor: Constructor, lty: Ty,
witness: WitnessPreference) -> Usefulness {
fn is_useful_specialized<'a, 'tcx>(
cx: &MatchCheckCtxt<'a, 'tcx>,
&Matrix(ref m): &Matrix<'a, 'tcx>,
v: &[(&Pat, Option<Ty<'tcx>>)],
ctor: Constructor,
lty: Ty<'tcx>,
witness: WitnessPreference) -> Usefulness
{
let arity = constructor_arity(cx, &ctor, lty);
let matrix = Matrix(m.iter().filter_map(|r| {
specialize(cx, &r[..], &ctor, 0, arity)
@ -859,6 +863,19 @@ fn range_covered_by_constructor(ctor: &Constructor,
}
}
fn wrap_pat<'a, 'b, 'tcx>(cx: &MatchCheckCtxt<'b, 'tcx>,
pat: &'a Pat)
-> (&'a Pat, Option<Ty<'tcx>>)
{
let pat_ty = cx.tcx.pat_ty(pat);
(pat, Some(match pat.node {
PatKind::Binding(hir::BindByRef(..), _, _) => {
pat_ty.builtin_deref(false, NoPreference).unwrap().ty
}
_ => pat_ty
}))
}
/// This is the main specialization step. It expands the first pattern in the given row
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
@ -867,14 +884,22 @@ fn range_covered_by_constructor(ctor: &Constructor,
/// different patterns.
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
constructor: &Constructor, col: usize, arity: usize) -> Option<Vec<&'a Pat>> {
pub fn specialize<'a, 'b, 'tcx>(
cx: &MatchCheckCtxt<'b, 'tcx>,
r: &[(&'a Pat, Option<Ty<'tcx>>)],
constructor: &Constructor, col: usize, arity: usize)
-> Option<Vec<(&'a Pat, Option<Ty<'tcx>>)>>
{
let pat = raw_pat(r[col].0);
let &Pat {
id: pat_id, ref node, span: pat_span
} = raw_pat(r[col]);
let head: Option<Vec<&Pat>> = match *node {
} = pat;
let wpat = |pat: &'a Pat| wrap_pat(cx, pat);
let dummy_pat = (DUMMY_WILD_PAT, None);
let head: Option<Vec<(&Pat, Option<Ty>)>> = match *node {
PatKind::Binding(..) | PatKind::Wild =>
Some(vec![DUMMY_WILD_PAT; arity]),
Some(vec![dummy_pat; arity]),
PatKind::Path(..) => {
let def = cx.tcx.def_map.borrow().get(&pat_id).unwrap().full_def();
@ -899,12 +924,14 @@ pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
Def::Variant(..) | Def::Struct(..) => {
match ddpos {
Some(ddpos) => {
let mut pats: Vec<_> = args[..ddpos].iter().map(|p| &**p).collect();
pats.extend(repeat(DUMMY_WILD_PAT).take(arity - args.len()));
pats.extend(args[ddpos..].iter().map(|p| &**p));
let mut pats: Vec<_> = args[..ddpos].iter().map(|p| {
wpat(p)
}).collect();
pats.extend(repeat((DUMMY_WILD_PAT, None)).take(arity - args.len()));
pats.extend(args[ddpos..].iter().map(|p| wpat(p)));
Some(pats)
}
None => Some(args.iter().map(|p| &**p).collect())
None => Some(args.iter().map(|p| wpat(p)).collect())
}
}
_ => None
@ -923,8 +950,8 @@ pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
if variant.did == def_variant.did {
Some(variant.fields.iter().map(|sf| {
match pattern_fields.iter().find(|f| f.node.name == sf.name) {
Some(ref f) => &*f.node.pat,
_ => DUMMY_WILD_PAT
Some(ref f) => wpat(&f.node.pat),
_ => dummy_pat
}
}).collect())
} else {
@ -933,25 +960,32 @@ pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
}
PatKind::Tuple(ref args, Some(ddpos)) => {
let mut pats: Vec<_> = args[..ddpos].iter().map(|p| &**p).collect();
pats.extend(repeat(DUMMY_WILD_PAT).take(arity - args.len()));
pats.extend(args[ddpos..].iter().map(|p| &**p));
let mut pats: Vec<_> = args[..ddpos].iter().map(|p| wpat(p)).collect();
pats.extend(repeat(dummy_pat).take(arity - args.len()));
pats.extend(args[ddpos..].iter().map(|p| wpat(p)));
Some(pats)
}
PatKind::Tuple(ref args, None) =>
Some(args.iter().map(|p| &**p).collect()),
Some(args.iter().map(|p| wpat(&**p)).collect()),
PatKind::Box(ref inner) | PatKind::Ref(ref inner, _) =>
Some(vec![&**inner]),
Some(vec![wpat(&**inner)]),
PatKind::Lit(ref expr) => {
let expr_value = eval_const_expr(cx.tcx, &expr);
match range_covered_by_constructor(constructor, &expr_value, &expr_value) {
Some(true) => Some(vec![]),
Some(false) => None,
None => {
span_err!(cx.tcx.sess, pat_span, E0298, "mismatched types between arms");
None
if let Some(&ty::TyS { sty: ty::TyRef(_, mt), .. }) = r[col].1 {
// HACK: handle string literals. A string literal pattern
// serves both as an unary reference pattern and as a
// nullary value pattern, depending on the type.
Some(vec![(pat, Some(mt.ty))])
} else {
let expr_value = eval_const_expr(cx.tcx, &expr);
match range_covered_by_constructor(constructor, &expr_value, &expr_value) {
Some(true) => Some(vec![]),
Some(false) => None,
None => {
span_err!(cx.tcx.sess, pat_span, E0298, "mismatched types between arms");
None
}
}
}
}
@ -975,22 +1009,22 @@ pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
Single => {
// Fixed-length vectors.
Some(
before.iter().map(|p| &**p).chain(
repeat(DUMMY_WILD_PAT).take(arity - pat_len).chain(
after.iter().map(|p| &**p)
before.iter().map(|p| wpat(p)).chain(
repeat(dummy_pat).take(arity - pat_len).chain(
after.iter().map(|p| wpat(p))
)).collect())
},
Slice(length) if pat_len <= length && slice.is_some() => {
Some(
before.iter().map(|p| &**p).chain(
repeat(DUMMY_WILD_PAT).take(arity - pat_len).chain(
after.iter().map(|p| &**p)
before.iter().map(|p| wpat(p)).chain(
repeat(dummy_pat).take(arity - pat_len).chain(
after.iter().map(|p| wpat(p))
)).collect())
}
Slice(length) if pat_len == length => {
Some(
before.iter().map(|p| &**p).chain(
after.iter().map(|p| &**p)
before.iter().map(|p| wpat(p)).chain(
after.iter().map(|p| wpat(p))
).collect())
}
SliceWithSubslice(prefix, suffix)
@ -998,14 +1032,17 @@ pub fn specialize<'a>(cx: &MatchCheckCtxt, r: &[&'a Pat],
&& after.len() == suffix
&& slice.is_some() => {
// this is used by trans::_match only
let mut pats: Vec<&Pat> = before.iter().map(|p| &**p).collect();
pats.extend(after.iter().map(|p| &**p));
let mut pats: Vec<_> = before.iter()
.map(|p| (&**p, None)).collect();
pats.extend(after.iter().map(|p| (&**p, None)));
Some(pats)
}
_ => None
}
}
};
debug!("specialize({:?}, {:?}) = {:?}", r[col], arity, head);
head.map(|mut head| {
head.extend_from_slice(&r[..col]);
head.extend_from_slice(&r[col + 1..]);
@ -1063,8 +1100,8 @@ fn check_irrefutable(cx: &MatchCheckCtxt, pat: &Pat, is_fn_arg: bool) {
fn is_refutable<A, F>(cx: &MatchCheckCtxt, pat: &Pat, refutable: F) -> Option<A> where
F: FnOnce(&Pat) -> A,
{
let pats = Matrix(vec!(vec!(pat)));
match is_useful(cx, &pats, &[DUMMY_WILD_PAT], ConstructWitness) {
let pats = Matrix(vec!(vec!(wrap_pat(cx, pat))));
match is_useful(cx, &pats, &[(DUMMY_WILD_PAT, None)], ConstructWitness) {
UsefulWithWitness(pats) => Some(refutable(&pats[0])),
NotUseful => None,
Useful => bug!()

View File

@ -505,14 +505,16 @@ fn enter_match<'a, 'b, 'p, 'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
val: MatchInput,
mut e: F)
-> Vec<Match<'a, 'p, 'blk, 'tcx>> where
F: FnMut(&[&'p hir::Pat]) -> Option<Vec<&'p hir::Pat>>,
F: FnMut(&[(&'p hir::Pat, Option<Ty<'tcx>>)])
-> Option<Vec<(&'p hir::Pat, Option<Ty<'tcx>>)>>,
{
debug!("enter_match(bcx={}, m={:?}, col={}, val={:?})",
bcx.to_str(), m, col, val);
let _indenter = indenter();
m.iter().filter_map(|br| {
e(&br.pats).map(|pats| {
let pats : Vec<_> = br.pats.iter().map(|p| (*p, None)).collect();
e(&pats).map(|pats| {
let this = br.pats[col];
let mut bound_ptrs = br.bound_ptrs.clone();
match this.node {
@ -530,7 +532,7 @@ fn enter_match<'a, 'b, 'p, 'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
_ => {}
}
Match {
pats: pats,
pats: pats.into_iter().map(|p| p.0).collect(),
data: br.data,
bound_ptrs: bound_ptrs,
pat_renaming_map: br.pat_renaming_map,
@ -550,7 +552,7 @@ fn enter_default<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
// Collect all of the matches that can match against anything.
enter_match(bcx, m, col, val, |pats| {
match pats[col].node {
match pats[col].0.node {
PatKind::Binding(..) | PatKind::Wild => {
let mut r = pats[..col].to_vec();
r.extend_from_slice(&pats[col + 1..]);

View File

@ -0,0 +1,21 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
fn main() {
match "world" { //~ ERROR non-exhaustive patterns: `&_`
"hello" => {}
}
match "world" { //~ ERROR non-exhaustive patterns: `&_`
ref _x if false => {}
"hello" => {}
"hello" => {} //~ ERROR unreachable pattern
}
}

View File

@ -0,0 +1,23 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
fn main() {
let &ref a = &[0i32] as &[_];
assert_eq!(a, &[0i32] as &[_]);
let &ref a = "hello";
assert_eq!(a, "hello");
match "foo" {
"fool" => unreachable!(),
"foo" => {},
ref _x => unreachable!()
}
}