Try structurally resolve

This commit is contained in:
Michael Goulet 2024-05-07 16:48:15 -04:00
parent 55cf09d761
commit 5ab6dca6d3
2 changed files with 77 additions and 29 deletions

View File

@ -134,6 +134,8 @@ pub trait TypeInformationCtxt<'tcx> {
fn resolve_vars_if_possible<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T;
fn try_structurally_resolve_type(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
fn tainted_by_errors(&self) -> Option<ErrorGuaranteed>;
fn type_is_copy_modulo_regions(&self, ty: Ty<'tcx>) -> bool;
@ -156,6 +158,10 @@ fn resolve_vars_if_possible<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
self.infcx.resolve_vars_if_possible(t)
}
fn try_structurally_resolve_type(&self, sp: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
(**self).try_structurally_resolve_type(sp, ty)
}
fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
if let Some(guar) = self.infcx.tainted_by_errors() { Err(guar) } else { Ok(()) }
}
@ -182,6 +188,11 @@ fn typeck_results(&self) -> Self::TypeckResults<'_> {
self.0.maybe_typeck_results().expect("expected typeck results")
}
fn try_structurally_resolve_type(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
// FIXME: Maybe need to normalize here.
ty
}
fn resolve_vars_if_possible<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
t
}
@ -543,7 +554,8 @@ fn maybe_read_scrutinee<'t>(
_ => {
// Otherwise, this is a struct/enum variant, and so it's
// only a read if we need to read the discriminant.
needs_to_be_read |= is_multivariant_adt(place.place.ty());
needs_to_be_read |=
self.is_multivariant_adt(place.place.ty(), pat.span);
}
}
}
@ -555,7 +567,7 @@ fn maybe_read_scrutinee<'t>(
// perform some reads).
let place_ty = place.place.ty();
needs_to_be_read |= is_multivariant_adt(place_ty);
needs_to_be_read |= self.is_multivariant_adt(place_ty, pat.span);
}
PatKind::Lit(_) | PatKind::Range(..) => {
// If the PatKind is a Lit or a Range then we want
@ -676,7 +688,7 @@ fn walk_struct_expr<'hir>(
// Select just those fields of the `with`
// expression that will actually be used
match with_place.place.ty().kind() {
match self.cx.try_structurally_resolve_type(with_expr.span, with_place.place.ty()).kind() {
ty::Adt(adt, args) if adt.is_struct() => {
// Consume those fields of the with expression that are needed.
for (f_index, with_field) in adt.non_enum_variant().fields.iter_enumerated() {
@ -1099,8 +1111,12 @@ fn pat_ty_unadjusted(&self, pat: &hir::Pat<'_>) -> McResult<Ty<'tcx>> {
// a bind-by-ref means that the base_ty will be the type of the ident itself,
// but what we want here is the type of the underlying value being borrowed.
// So peel off one-level, turning the &T into T.
match base_ty.builtin_deref(false) {
Some(t) => Ok(t.ty),
match self
.cx
.try_structurally_resolve_type(pat.span, base_ty)
.builtin_deref(false)
{
Some(ty) => Ok(ty),
None => {
debug!("By-ref binding of non-derefable type");
Err(self
@ -1333,7 +1349,15 @@ fn cat_projection(
// Opaque types can't have field projections, but we can instead convert
// the current place in-place (heh) to the hidden type, and then apply all
// follow up projections on that.
if node_ty != place_ty && matches!(place_ty.kind(), ty::Alias(ty::Opaque, ..)) {
if node_ty != place_ty
&& self
.cx
.try_structurally_resolve_type(
self.cx.tcx().hir().span(base_place.hir_id),
place_ty,
)
.is_impl_trait()
{
projections.push(Projection { kind: ProjectionKind::OpaqueCast, ty: node_ty });
}
projections.push(Projection { kind, ty });
@ -1351,7 +1375,9 @@ fn cat_overloaded_place(
let place_ty = self.expr_ty(expr)?;
let base_ty = self.expr_ty_adjusted(base)?;
let ty::Ref(region, _, mutbl) = *base_ty.kind() else {
let ty::Ref(region, _, mutbl) =
*self.cx.try_structurally_resolve_type(base.span, base_ty).kind()
else {
span_bug!(expr.span, "cat_overloaded_place: base is not a reference");
};
let ref_ty = Ty::new_ref(self.cx.tcx(), region, place_ty, mutbl);
@ -1366,8 +1392,15 @@ fn cat_deref(
base_place: PlaceWithHirId<'tcx>,
) -> McResult<PlaceWithHirId<'tcx>> {
let base_curr_ty = base_place.place.ty();
let deref_ty = match base_curr_ty.builtin_deref(true) {
Some(mt) => mt.ty,
let deref_ty = match self
.cx
.try_structurally_resolve_type(
self.cx.tcx().hir().span(base_place.hir_id),
base_curr_ty,
)
.builtin_deref(true)
{
Some(ty) => ty,
None => {
debug!("explicit deref of non-derefable type: {:?}", base_curr_ty);
return Err(self.cx.tcx().dcx().span_delayed_bug(
@ -1404,7 +1437,7 @@ fn variant_index_for_adt(
) -> McResult<VariantIdx> {
let res = self.cx.typeck_results().qpath_res(qpath, pat_hir_id);
let ty = self.cx.typeck_results().node_type(pat_hir_id);
let ty::Adt(adt_def, _) = ty.kind() else {
let ty::Adt(adt_def, _) = self.cx.try_structurally_resolve_type(span, ty).kind() else {
return Err(self
.cx
.tcx()
@ -1438,7 +1471,7 @@ fn total_fields_in_adt_variant(
span: Span,
) -> McResult<usize> {
let ty = self.cx.typeck_results().node_type(pat_hir_id);
match ty.kind() {
match self.cx.try_structurally_resolve_type(span, ty).kind() {
ty::Adt(adt_def, _) => Ok(adt_def.variant(variant_index).fields.len()),
_ => {
self.cx
@ -1453,7 +1486,7 @@ fn total_fields_in_adt_variant(
/// Here `pat_hir_id` is the HirId of the pattern itself.
fn total_fields_in_tuple(&self, pat_hir_id: HirId, span: Span) -> McResult<usize> {
let ty = self.cx.typeck_results().node_type(pat_hir_id);
match ty.kind() {
match self.cx.try_structurally_resolve_type(span, ty).kind() {
ty::Tuple(args) => Ok(args.len()),
_ => Err(self
.cx
@ -1668,23 +1701,23 @@ fn cat_pattern_<F>(
Ok(())
}
}
fn is_multivariant_adt(ty: Ty<'_>) -> bool {
if let ty::Adt(def, _) = ty.kind() {
// Note that if a non-exhaustive SingleVariant is defined in another crate, we need
// to assume that more cases will be added to the variant in the future. This mean
// that we should handle non-exhaustive SingleVariant the same way we would handle
// a MultiVariant.
// If the variant is not local it must be defined in another crate.
let is_non_exhaustive = match def.adt_kind() {
AdtKind::Struct | AdtKind::Union => {
def.non_enum_variant().is_field_list_non_exhaustive()
}
AdtKind::Enum => def.is_variant_list_non_exhaustive(),
};
def.variants().len() > 1 || (!def.did().is_local() && is_non_exhaustive)
} else {
false
fn is_multivariant_adt(&self, ty: Ty<'tcx>, span: Span) -> bool {
if let ty::Adt(def, _) = self.cx.try_structurally_resolve_type(span, ty).kind() {
// Note that if a non-exhaustive SingleVariant is defined in another crate, we need
// to assume that more cases will be added to the variant in the future. This mean
// that we should handle non-exhaustive SingleVariant the same way we would handle
// a MultiVariant.
// If the variant is not local it must be defined in another crate.
let is_non_exhaustive = match def.adt_kind() {
AdtKind::Struct | AdtKind::Union => {
def.non_enum_variant().is_field_list_non_exhaustive()
}
AdtKind::Enum => def.is_variant_list_non_exhaustive(),
};
def.variants().len() > 1 || (!def.did().is_local() && is_non_exhaustive)
} else {
false
}
}
}

View File

@ -0,0 +1,15 @@
//@ compile-flags: -Znext-solver
//@ check-pass
struct Struct {
field: i32,
}
fn hello(f: impl Fn() -> &'static Box<[i32]>, f2: impl Fn() -> &'static Struct) {
let cl = || {
let x = &f()[0];
let y = &f2().field;
};
}
fn main() {}