Fix typos caused during rebase
This commit is contained in:
parent
b2fe254c98
commit
51b06656da
@ -362,7 +362,7 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
|
||||
}
|
||||
};
|
||||
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
|
||||
helper.do_call(self, &mut bx, fn_ty, drop_fn, args,
|
||||
helper.do_call(self, &mut bx, fn_abi, drop_fn, args,
|
||||
Some((ReturnDest::Nothing, target)),
|
||||
unwind);
|
||||
}
|
||||
@ -779,7 +779,7 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
|
||||
if let Some((_, target)) = destination.as_ref() {
|
||||
helper.maybe_sideeffect(self.mir, &mut bx, &[*target]);
|
||||
}
|
||||
helper.do_call(self, &mut bx, fn_ty, fn_ptr, &llargs,
|
||||
helper.do_call(self, &mut bx, fn_abi, fn_ptr, &llargs,
|
||||
destination.as_ref().map(|&(_, target)| (ret_dest, target)),
|
||||
cleanup);
|
||||
}
|
||||
|
1257
src/librustc_codegen_ssa/mir/block.rs.orig
Normal file
1257
src/librustc_codegen_ssa/mir/block.rs.orig
Normal file
File diff suppressed because it is too large
Load Diff
439
src/librustc_codegen_ssa/mir/mod.rs.orig
Normal file
439
src/librustc_codegen_ssa/mir/mod.rs.orig
Normal file
@ -0,0 +1,439 @@
|
||||
use rustc::ty::{self, Ty, TypeFoldable, Instance};
|
||||
<<<<<<< HEAD
|
||||
use rustc::ty::layout::{TyLayout, HasTyCtxt, FnAbiExt};
|
||||
use rustc::mir::{self, Body, BodyCache};
|
||||
use rustc_target::abi::call::{FnAbi, PassMode};
|
||||
=======
|
||||
use rustc::ty::layout::{TyLayout, HasTyCtxt, FnTypeExt};
|
||||
use rustc::mir::{self, Body, ReadOnlyBodyCache};
|
||||
use rustc_target::abi::call::{FnType, PassMode};
|
||||
>>>>>>> Simplify BodyCache impl and fix all remaining type errors in librustc_mir (lifetime errors still exist)
|
||||
use crate::base;
|
||||
use crate::traits::*;
|
||||
|
||||
use std::iter;
|
||||
|
||||
use rustc_index::bit_set::BitSet;
|
||||
use rustc_index::vec::IndexVec;
|
||||
|
||||
use self::analyze::CleanupKind;
|
||||
use self::debuginfo::FunctionDebugContext;
|
||||
use self::place::PlaceRef;
|
||||
use rustc::mir::traversal;
|
||||
|
||||
use self::operand::{OperandRef, OperandValue};
|
||||
|
||||
/// Master context for codegenning from MIR.
|
||||
pub struct FunctionCx<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> {
|
||||
instance: Instance<'tcx>,
|
||||
|
||||
mir: mir::ReadOnlyBodyCache<'a, 'tcx>,
|
||||
|
||||
debug_context: Option<FunctionDebugContext<Bx::DIScope>>,
|
||||
|
||||
llfn: Bx::Function,
|
||||
|
||||
cx: &'a Bx::CodegenCx,
|
||||
|
||||
fn_abi: FnAbi<'tcx, Ty<'tcx>>,
|
||||
|
||||
/// When unwinding is initiated, we have to store this personality
|
||||
/// value somewhere so that we can load it and re-use it in the
|
||||
/// resume instruction. The personality is (afaik) some kind of
|
||||
/// value used for C++ unwinding, which must filter by type: we
|
||||
/// don't really care about it very much. Anyway, this value
|
||||
/// contains an alloca into which the personality is stored and
|
||||
/// then later loaded when generating the DIVERGE_BLOCK.
|
||||
personality_slot: Option<PlaceRef<'tcx, Bx::Value>>,
|
||||
|
||||
/// A `Block` for each MIR `BasicBlock`
|
||||
blocks: IndexVec<mir::BasicBlock, Bx::BasicBlock>,
|
||||
|
||||
/// The funclet status of each basic block
|
||||
cleanup_kinds: IndexVec<mir::BasicBlock, analyze::CleanupKind>,
|
||||
|
||||
/// When targeting MSVC, this stores the cleanup info for each funclet
|
||||
/// BB. This is initialized as we compute the funclets' head block in RPO.
|
||||
funclets: IndexVec<mir::BasicBlock, Option<Bx::Funclet>>,
|
||||
|
||||
/// This stores the landing-pad block for a given BB, computed lazily on GNU
|
||||
/// and eagerly on MSVC.
|
||||
landing_pads: IndexVec<mir::BasicBlock, Option<Bx::BasicBlock>>,
|
||||
|
||||
/// Cached unreachable block
|
||||
unreachable_block: Option<Bx::BasicBlock>,
|
||||
|
||||
/// The location where each MIR arg/var/tmp/ret is stored. This is
|
||||
/// usually an `PlaceRef` representing an alloca, but not always:
|
||||
/// sometimes we can skip the alloca and just store the value
|
||||
/// directly using an `OperandRef`, which makes for tighter LLVM
|
||||
/// IR. The conditions for using an `OperandRef` are as follows:
|
||||
///
|
||||
/// - the type of the local must be judged "immediate" by `is_llvm_immediate`
|
||||
/// - the operand must never be referenced indirectly
|
||||
/// - we should not take its address using the `&` operator
|
||||
/// - nor should it appear in a place path like `tmp.a`
|
||||
/// - the operand must be defined by an rvalue that can generate immediate
|
||||
/// values
|
||||
///
|
||||
/// Avoiding allocs can also be important for certain intrinsics,
|
||||
/// notably `expect`.
|
||||
locals: IndexVec<mir::Local, LocalRef<'tcx, Bx::Value>>,
|
||||
|
||||
per_local_var_debug_info: Option<IndexVec<mir::Local, Vec<debuginfo::VarDebugInfo<'tcx>>>>,
|
||||
}
|
||||
|
||||
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
|
||||
pub fn monomorphize<T>(&self, value: &T) -> T
|
||||
where T: TypeFoldable<'tcx>
|
||||
{
|
||||
self.cx.tcx().subst_and_normalize_erasing_regions(
|
||||
self.instance.substs,
|
||||
ty::ParamEnv::reveal_all(),
|
||||
value,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
enum LocalRef<'tcx, V> {
|
||||
Place(PlaceRef<'tcx, V>),
|
||||
/// `UnsizedPlace(p)`: `p` itself is a thin pointer (indirect place).
|
||||
/// `*p` is the fat pointer that references the actual unsized place.
|
||||
/// Every time it is initialized, we have to reallocate the place
|
||||
/// and update the fat pointer. That's the reason why it is indirect.
|
||||
UnsizedPlace(PlaceRef<'tcx, V>),
|
||||
Operand(Option<OperandRef<'tcx, V>>),
|
||||
}
|
||||
|
||||
impl<'a, 'tcx, V: CodegenObject> LocalRef<'tcx, V> {
|
||||
fn new_operand<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
|
||||
bx: &mut Bx,
|
||||
layout: TyLayout<'tcx>,
|
||||
) -> LocalRef<'tcx, V> {
|
||||
if layout.is_zst() {
|
||||
// Zero-size temporaries aren't always initialized, which
|
||||
// doesn't matter because they don't contain data, but
|
||||
// we need something in the operand.
|
||||
LocalRef::Operand(Some(OperandRef::new_zst(bx, layout)))
|
||||
} else {
|
||||
LocalRef::Operand(None)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
pub fn codegen_mir<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||||
cx: &'a Bx::CodegenCx,
|
||||
llfn: Bx::Function,
|
||||
mir: ReadOnlyBodyCache<'a, 'tcx>,
|
||||
instance: Instance<'tcx>,
|
||||
sig: ty::FnSig<'tcx>,
|
||||
) {
|
||||
assert!(!instance.substs.needs_infer());
|
||||
|
||||
let fn_abi = FnAbi::new(cx, sig, &[]);
|
||||
debug!("fn_abi: {:?}", fn_abi);
|
||||
|
||||
let debug_context =
|
||||
cx.create_function_debug_context(instance, sig, llfn, &mir);
|
||||
|
||||
let mut bx = Bx::new_block(cx, llfn, "start");
|
||||
|
||||
if mir.basic_blocks().iter().any(|bb| bb.is_cleanup) {
|
||||
bx.set_personality_fn(cx.eh_personality());
|
||||
}
|
||||
|
||||
bx.sideeffect();
|
||||
|
||||
let cleanup_kinds = analyze::cleanup_kinds(&mir);
|
||||
// Allocate a `Block` for every basic block, except
|
||||
// the start block, if nothing loops back to it.
|
||||
let reentrant_start_block = !mir.predecessors_for(mir::START_BLOCK).is_empty();
|
||||
let block_bxs: IndexVec<mir::BasicBlock, Bx::BasicBlock> =
|
||||
mir.basic_blocks().indices().map(|bb| {
|
||||
if bb == mir::START_BLOCK && !reentrant_start_block {
|
||||
bx.llbb()
|
||||
} else {
|
||||
bx.build_sibling_block(&format!("{:?}", bb)).llbb()
|
||||
}
|
||||
}).collect();
|
||||
|
||||
let (landing_pads, funclets) = create_funclets(&mir, &mut bx, &cleanup_kinds, &block_bxs);
|
||||
let mir_body = mir.body();
|
||||
let mut fx = FunctionCx {
|
||||
instance,
|
||||
mir,
|
||||
llfn,
|
||||
fn_abi,
|
||||
cx,
|
||||
personality_slot: None,
|
||||
blocks: block_bxs,
|
||||
unreachable_block: None,
|
||||
cleanup_kinds,
|
||||
landing_pads,
|
||||
funclets,
|
||||
locals: IndexVec::new(),
|
||||
debug_context,
|
||||
per_local_var_debug_info: debuginfo::per_local_var_debug_info(cx.tcx(), mir),
|
||||
};
|
||||
|
||||
let memory_locals = analyze::non_ssa_locals(&fx);
|
||||
|
||||
// Allocate variable and temp allocas
|
||||
fx.locals = {
|
||||
let args = arg_local_refs(&mut bx, &fx, &memory_locals);
|
||||
|
||||
let mut allocate_local = |local| {
|
||||
let decl = &mir_body.local_decls[local];
|
||||
let layout = bx.layout_of(fx.monomorphize(&decl.ty));
|
||||
assert!(!layout.ty.has_erasable_regions());
|
||||
|
||||
if local == mir::RETURN_PLACE && fx.fn_abi.ret.is_indirect() {
|
||||
debug!("alloc: {:?} (return place) -> place", local);
|
||||
let llretptr = bx.get_param(0);
|
||||
return LocalRef::Place(PlaceRef::new_sized(llretptr, layout));
|
||||
}
|
||||
|
||||
if memory_locals.contains(local) {
|
||||
debug!("alloc: {:?} -> place", local);
|
||||
if layout.is_unsized() {
|
||||
LocalRef::UnsizedPlace(PlaceRef::alloca_unsized_indirect(&mut bx, layout))
|
||||
} else {
|
||||
LocalRef::Place(PlaceRef::alloca(&mut bx, layout))
|
||||
}
|
||||
} else {
|
||||
debug!("alloc: {:?} -> operand", local);
|
||||
LocalRef::new_operand(&mut bx, layout)
|
||||
}
|
||||
};
|
||||
|
||||
let retptr = allocate_local(mir::RETURN_PLACE);
|
||||
iter::once(retptr)
|
||||
.chain(args.into_iter())
|
||||
.chain(mir_body.vars_and_temps_iter().map(allocate_local))
|
||||
.collect()
|
||||
};
|
||||
|
||||
// Apply debuginfo to the newly allocated locals.
|
||||
fx.debug_introduce_locals(&mut bx);
|
||||
|
||||
// Branch to the START block, if it's not the entry block.
|
||||
if reentrant_start_block {
|
||||
bx.br(fx.blocks[mir::START_BLOCK]);
|
||||
}
|
||||
|
||||
// Up until here, IR instructions for this function have explicitly not been annotated with
|
||||
// source code location, so we don't step into call setup code. From here on, source location
|
||||
// emitting should be enabled.
|
||||
if let Some(debug_context) = &mut fx.debug_context {
|
||||
debug_context.source_locations_enabled = true;
|
||||
}
|
||||
|
||||
let rpo = traversal::reverse_postorder(&mir_body);
|
||||
let mut visited = BitSet::new_empty(mir_body.basic_blocks().len());
|
||||
|
||||
// Codegen the body of each block using reverse postorder
|
||||
for (bb, _) in rpo {
|
||||
visited.insert(bb.index());
|
||||
fx.codegen_block(bb);
|
||||
}
|
||||
|
||||
// Remove blocks that haven't been visited, or have no
|
||||
// predecessors.
|
||||
for bb in mir_body.basic_blocks().indices() {
|
||||
// Unreachable block
|
||||
if !visited.contains(bb.index()) {
|
||||
debug!("codegen_mir: block {:?} was not visited", bb);
|
||||
unsafe {
|
||||
bx.delete_basic_block(fx.blocks[bb]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn create_funclets<'a, 'b, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||||
mir: &'b Body<'tcx>,
|
||||
bx: &mut Bx,
|
||||
cleanup_kinds: &IndexVec<mir::BasicBlock, CleanupKind>,
|
||||
block_bxs: &IndexVec<mir::BasicBlock, Bx::BasicBlock>,
|
||||
) -> (
|
||||
IndexVec<mir::BasicBlock, Option<Bx::BasicBlock>>,
|
||||
IndexVec<mir::BasicBlock, Option<Bx::Funclet>>,
|
||||
) {
|
||||
block_bxs.iter_enumerated().zip(cleanup_kinds).map(|((bb, &llbb), cleanup_kind)| {
|
||||
match *cleanup_kind {
|
||||
CleanupKind::Funclet if base::wants_msvc_seh(bx.sess()) => {}
|
||||
_ => return (None, None)
|
||||
}
|
||||
|
||||
let funclet;
|
||||
let ret_llbb;
|
||||
match mir[bb].terminator.as_ref().map(|t| &t.kind) {
|
||||
// This is a basic block that we're aborting the program for,
|
||||
// notably in an `extern` function. These basic blocks are inserted
|
||||
// so that we assert that `extern` functions do indeed not panic,
|
||||
// and if they do we abort the process.
|
||||
//
|
||||
// On MSVC these are tricky though (where we're doing funclets). If
|
||||
// we were to do a cleanuppad (like below) the normal functions like
|
||||
// `longjmp` would trigger the abort logic, terminating the
|
||||
// program. Instead we insert the equivalent of `catch(...)` for C++
|
||||
// which magically doesn't trigger when `longjmp` files over this
|
||||
// frame.
|
||||
//
|
||||
// Lots more discussion can be found on #48251 but this codegen is
|
||||
// modeled after clang's for:
|
||||
//
|
||||
// try {
|
||||
// foo();
|
||||
// } catch (...) {
|
||||
// bar();
|
||||
// }
|
||||
Some(&mir::TerminatorKind::Abort) => {
|
||||
let mut cs_bx = bx.build_sibling_block(&format!("cs_funclet{:?}", bb));
|
||||
let mut cp_bx = bx.build_sibling_block(&format!("cp_funclet{:?}", bb));
|
||||
ret_llbb = cs_bx.llbb();
|
||||
|
||||
let cs = cs_bx.catch_switch(None, None, 1);
|
||||
cs_bx.add_handler(cs, cp_bx.llbb());
|
||||
|
||||
// The "null" here is actually a RTTI type descriptor for the
|
||||
// C++ personality function, but `catch (...)` has no type so
|
||||
// it's null. The 64 here is actually a bitfield which
|
||||
// represents that this is a catch-all block.
|
||||
let null = bx.const_null(bx.type_i8p());
|
||||
let sixty_four = bx.const_i32(64);
|
||||
funclet = cp_bx.catch_pad(cs, &[null, sixty_four, null]);
|
||||
cp_bx.br(llbb);
|
||||
}
|
||||
_ => {
|
||||
let mut cleanup_bx = bx.build_sibling_block(&format!("funclet_{:?}", bb));
|
||||
ret_llbb = cleanup_bx.llbb();
|
||||
funclet = cleanup_bx.cleanup_pad(None, &[]);
|
||||
cleanup_bx.br(llbb);
|
||||
}
|
||||
};
|
||||
|
||||
(Some(ret_llbb), Some(funclet))
|
||||
}).unzip()
|
||||
}
|
||||
|
||||
/// Produces, for each argument, a `Value` pointing at the
|
||||
/// argument's value. As arguments are places, these are always
|
||||
/// indirect.
|
||||
fn arg_local_refs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
|
||||
bx: &mut Bx,
|
||||
fx: &FunctionCx<'a, 'tcx, Bx>,
|
||||
memory_locals: &BitSet<mir::Local>,
|
||||
) -> Vec<LocalRef<'tcx, Bx::Value>> {
|
||||
let mut idx = 0;
|
||||
let mut llarg_idx = fx.fn_abi.ret.is_indirect() as usize;
|
||||
|
||||
fx.mir.args_iter().enumerate().map(|(arg_index, local)| {
|
||||
let arg_decl = &fx.mir.local_decls[local];
|
||||
|
||||
if Some(local) == fx.mir.spread_arg {
|
||||
// This argument (e.g., the last argument in the "rust-call" ABI)
|
||||
// is a tuple that was spread at the ABI level and now we have
|
||||
// to reconstruct it into a tuple local variable, from multiple
|
||||
// individual LLVM function arguments.
|
||||
|
||||
let arg_ty = fx.monomorphize(&arg_decl.ty);
|
||||
let tupled_arg_tys = match arg_ty.kind {
|
||||
ty::Tuple(ref tys) => tys,
|
||||
_ => bug!("spread argument isn't a tuple?!")
|
||||
};
|
||||
|
||||
let place = PlaceRef::alloca(bx, bx.layout_of(arg_ty));
|
||||
for i in 0..tupled_arg_tys.len() {
|
||||
let arg = &fx.fn_abi.args[idx];
|
||||
idx += 1;
|
||||
if arg.pad.is_some() {
|
||||
llarg_idx += 1;
|
||||
}
|
||||
let pr_field = place.project_field(bx, i);
|
||||
bx.store_fn_arg(arg, &mut llarg_idx, pr_field);
|
||||
}
|
||||
|
||||
return LocalRef::Place(place);
|
||||
}
|
||||
|
||||
if fx.fn_abi.c_variadic && arg_index == fx.fn_abi.args.len() {
|
||||
let arg_ty = fx.monomorphize(&arg_decl.ty);
|
||||
|
||||
let va_list = PlaceRef::alloca(bx, bx.layout_of(arg_ty));
|
||||
bx.va_start(va_list.llval);
|
||||
|
||||
return LocalRef::Place(va_list);
|
||||
}
|
||||
|
||||
let arg = &fx.fn_abi.args[idx];
|
||||
idx += 1;
|
||||
if arg.pad.is_some() {
|
||||
llarg_idx += 1;
|
||||
}
|
||||
|
||||
if !memory_locals.contains(local) {
|
||||
// We don't have to cast or keep the argument in the alloca.
|
||||
// FIXME(eddyb): We should figure out how to use llvm.dbg.value instead
|
||||
// of putting everything in allocas just so we can use llvm.dbg.declare.
|
||||
let local = |op| LocalRef::Operand(Some(op));
|
||||
match arg.mode {
|
||||
PassMode::Ignore => {
|
||||
return local(OperandRef::new_zst(bx, arg.layout));
|
||||
}
|
||||
PassMode::Direct(_) => {
|
||||
let llarg = bx.get_param(llarg_idx);
|
||||
llarg_idx += 1;
|
||||
return local(
|
||||
OperandRef::from_immediate_or_packed_pair(bx, llarg, arg.layout));
|
||||
}
|
||||
PassMode::Pair(..) => {
|
||||
let (a, b) = (bx.get_param(llarg_idx), bx.get_param(llarg_idx + 1));
|
||||
llarg_idx += 2;
|
||||
|
||||
return local(OperandRef {
|
||||
val: OperandValue::Pair(a, b),
|
||||
layout: arg.layout
|
||||
});
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
|
||||
if arg.is_sized_indirect() {
|
||||
// Don't copy an indirect argument to an alloca, the caller
|
||||
// already put it in a temporary alloca and gave it up.
|
||||
// FIXME: lifetimes
|
||||
let llarg = bx.get_param(llarg_idx);
|
||||
llarg_idx += 1;
|
||||
LocalRef::Place(PlaceRef::new_sized(llarg, arg.layout))
|
||||
} else if arg.is_unsized_indirect() {
|
||||
// As the storage for the indirect argument lives during
|
||||
// the whole function call, we just copy the fat pointer.
|
||||
let llarg = bx.get_param(llarg_idx);
|
||||
llarg_idx += 1;
|
||||
let llextra = bx.get_param(llarg_idx);
|
||||
llarg_idx += 1;
|
||||
let indirect_operand = OperandValue::Pair(llarg, llextra);
|
||||
|
||||
let tmp = PlaceRef::alloca_unsized_indirect(bx, arg.layout);
|
||||
indirect_operand.store(bx, tmp);
|
||||
LocalRef::UnsizedPlace(tmp)
|
||||
} else {
|
||||
let tmp = PlaceRef::alloca(bx, arg.layout);
|
||||
bx.store_fn_arg(arg, &mut llarg_idx, tmp);
|
||||
LocalRef::Place(tmp)
|
||||
}
|
||||
}).collect()
|
||||
}
|
||||
|
||||
mod analyze;
|
||||
mod block;
|
||||
pub mod constant;
|
||||
pub mod debuginfo;
|
||||
pub mod place;
|
||||
pub mod operand;
|
||||
mod rvalue;
|
||||
mod statement;
|
Loading…
x
Reference in New Issue
Block a user