Auto merge of #76017 - JulianKnodt:fmt_fast, r=nagisa

Use less divisions in display u128/i128

This PR is an absolute mess, and I need to test if it improves the speed of fmt::Display for u128/i128, but I think it's correct.
It hopefully is more efficient by cutting u128 into at most 2 u64s, and also chunks by 1e16 instead of just 1e4.

Also I specialized the implementations for uints to always be non-false because it bothered me that it was checked at all

Do not merge until I benchmark it and also clean up the god awful mess of spaghetti.
Based on prior work in #44583

cc: `@Dylan-DPC`

Due to work on `itoa` and suggestion in original issue:
r? `@dtolnay`
This commit is contained in:
bors 2020-10-04 02:24:20 +00:00
commit 4cf3dc19a1
2 changed files with 284 additions and 60 deletions

View File

@ -108,3 +108,32 @@ fn write_str_macro_debug(bh: &mut Bencher) {
}
});
}
#[bench]
fn write_u128_max(bh: &mut Bencher) {
bh.iter(|| {
std::hint::black_box(format!("{}", u128::MAX));
});
}
#[bench]
fn write_u128_min(bh: &mut Bencher) {
bh.iter(|| {
let s = format!("{}", 0u128);
std::hint::black_box(s);
});
}
#[bench]
fn write_u64_max(bh: &mut Bencher) {
bh.iter(|| {
std::hint::black_box(format!("{}", u64::MAX));
});
}
#[bench]
fn write_u64_min(bh: &mut Bencher) {
bh.iter(|| {
std::hint::black_box(format!("{}", 0u64));
});
}

View File

@ -9,7 +9,7 @@
use crate::str;
#[doc(hidden)]
trait Int:
trait DisplayInt:
PartialEq + PartialOrd + Div<Output = Self> + Rem<Output = Self> + Sub<Output = Self> + Copy
{
fn zero() -> Self;
@ -21,22 +21,39 @@ trait Int:
fn to_u128(&self) -> u128;
}
macro_rules! doit {
($($t:ident)*) => ($(impl Int for $t {
fn zero() -> Self { 0 }
fn from_u8(u: u8) -> Self { u as Self }
fn to_u8(&self) -> u8 { *self as u8 }
fn to_u16(&self) -> u16 { *self as u16 }
fn to_u32(&self) -> u32 { *self as u32 }
fn to_u64(&self) -> u64 { *self as u64 }
fn to_u128(&self) -> u128 { *self as u128 }
})*)
macro_rules! impl_int {
($($t:ident)*) => (
$(impl DisplayInt for $t {
fn zero() -> Self { 0 }
fn from_u8(u: u8) -> Self { u as Self }
fn to_u8(&self) -> u8 { *self as u8 }
fn to_u16(&self) -> u16 { *self as u16 }
fn to_u32(&self) -> u32 { *self as u32 }
fn to_u64(&self) -> u64 { *self as u64 }
fn to_u128(&self) -> u128 { *self as u128 }
})*
)
}
doit! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize }
macro_rules! impl_uint {
($($t:ident)*) => (
$(impl DisplayInt for $t {
fn zero() -> Self { 0 }
fn from_u8(u: u8) -> Self { u as Self }
fn to_u8(&self) -> u8 { *self as u8 }
fn to_u16(&self) -> u16 { *self as u16 }
fn to_u32(&self) -> u32 { *self as u32 }
fn to_u64(&self) -> u64 { *self as u64 }
fn to_u128(&self) -> u128 { *self as u128 }
})*
)
}
impl_int! { i8 i16 i32 i64 i128 isize }
impl_uint! { u8 u16 u32 u64 u128 usize }
/// A type that represents a specific radix
#[doc(hidden)]
trait GenericRadix {
trait GenericRadix: Sized {
/// The number of digits.
const BASE: u8;
@ -47,7 +64,7 @@ trait GenericRadix {
fn digit(x: u8) -> u8;
/// Format an integer using the radix using a formatter.
fn fmt_int<T: Int>(&self, mut x: T, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fn fmt_int<T: DisplayInt>(&self, mut x: T, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// The radix can be as low as 2, so we need a buffer of at least 128
// characters for a base 2 number.
let zero = T::zero();
@ -127,13 +144,11 @@ fn digit(x: u8) -> u8 {
radix! { Binary, 2, "0b", x @ 0 ..= 1 => b'0' + x }
radix! { Octal, 8, "0o", x @ 0 ..= 7 => b'0' + x }
radix! { LowerHex, 16, "0x", x @ 0 ..= 9 => b'0' + x,
x @ 10 ..= 15 => b'a' + (x - 10) }
radix! { UpperHex, 16, "0x", x @ 0 ..= 9 => b'0' + x,
x @ 10 ..= 15 => b'A' + (x - 10) }
radix! { LowerHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'a' + (x - 10) }
radix! { UpperHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'A' + (x - 10) }
macro_rules! int_base {
($Trait:ident for $T:ident as $U:ident -> $Radix:ident) => {
(fmt::$Trait:ident for $T:ident as $U:ident -> $Radix:ident) => {
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::$Trait for $T {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
@ -143,8 +158,27 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
};
}
macro_rules! integer {
($Int:ident, $Uint:ident) => {
int_base! { fmt::Binary for $Int as $Uint -> Binary }
int_base! { fmt::Octal for $Int as $Uint -> Octal }
int_base! { fmt::LowerHex for $Int as $Uint -> LowerHex }
int_base! { fmt::UpperHex for $Int as $Uint -> UpperHex }
int_base! { fmt::Binary for $Uint as $Uint -> Binary }
int_base! { fmt::Octal for $Uint as $Uint -> Octal }
int_base! { fmt::LowerHex for $Uint as $Uint -> LowerHex }
int_base! { fmt::UpperHex for $Uint as $Uint -> UpperHex }
};
}
integer! { isize, usize }
integer! { i8, u8 }
integer! { i16, u16 }
integer! { i32, u32 }
integer! { i64, u64 }
integer! { i128, u128 }
macro_rules! debug {
($T:ident) => {
($($T:ident)*) => {$(
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for $T {
#[inline]
@ -158,31 +192,14 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
}
}
}
};
)*};
}
debug! {
i8 i16 i32 i64 i128 isize
u8 u16 u32 u64 u128 usize
}
macro_rules! integer {
($Int:ident, $Uint:ident) => {
int_base! { Binary for $Int as $Uint -> Binary }
int_base! { Octal for $Int as $Uint -> Octal }
int_base! { LowerHex for $Int as $Uint -> LowerHex }
int_base! { UpperHex for $Int as $Uint -> UpperHex }
debug! { $Int }
int_base! { Binary for $Uint as $Uint -> Binary }
int_base! { Octal for $Uint as $Uint -> Octal }
int_base! { LowerHex for $Uint as $Uint -> LowerHex }
int_base! { UpperHex for $Uint as $Uint -> UpperHex }
debug! { $Uint }
};
}
integer! { isize, usize }
integer! { i8, u8 }
integer! { i16, u16 }
integer! { i32, u32 }
integer! { i64, u64 }
integer! { i128, u128 }
// 2 digit decimal look up table
static DEC_DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\
2021222324252627282930313233343536373839\
4041424344454647484950515253545556575859\
@ -256,21 +273,20 @@ fn $name(mut n: $u, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Re
f.pad_integral(is_nonnegative, "", buf_slice)
}
$(
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for $t {
#[allow(unused_comparisons)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let is_nonnegative = *self >= 0;
let n = if is_nonnegative {
self.$conv_fn()
} else {
// convert the negative num to positive by summing 1 to it's 2 complement
(!self.$conv_fn()).wrapping_add(1)
};
$name(n, is_nonnegative, f)
}
})*
$(#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for $t {
#[allow(unused_comparisons)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let is_nonnegative = *self >= 0;
let n = if is_nonnegative {
self.$conv_fn()
} else {
// convert the negative num to positive by summing 1 to it's 2 complement
(!self.$conv_fn()).wrapping_add(1)
};
$name(n, is_nonnegative, f)
}
})*
};
}
@ -461,6 +477,185 @@ mod imp {
impl_Exp!(i8, u8, i16, u16, i32, u32, isize, usize as u32 via to_u32 named exp_u32);
impl_Exp!(i64, u64 as u64 via to_u64 named exp_u64);
}
impl_Display!(i128, u128 as u128 via to_u128 named fmt_u128);
impl_Exp!(i128, u128 as u128 via to_u128 named exp_u128);
/// Helper function for writing a u64 into `buf` going from last to first, with `curr`.
fn parse_u64_into<const N: usize>(mut n: u64, buf: &mut [MaybeUninit<u8>; N], curr: &mut isize) {
let buf_ptr = MaybeUninit::slice_as_mut_ptr(buf);
let lut_ptr = DEC_DIGITS_LUT.as_ptr();
assert!(*curr > 19);
// SAFETY:
// Writes at most 19 characters into the buffer. Guaranteed that any ptr into LUT is at most
// 198, so will never OOB. There is a check above that there are at least 19 characters
// remaining.
unsafe {
if n >= 1e16 as u64 {
let to_parse = n % 1e16 as u64;
n /= 1e16 as u64;
// Some of these are nops but it looks more elegant this way.
let d1 = ((to_parse / 1e14 as u64) % 100) << 1;
let d2 = ((to_parse / 1e12 as u64) % 100) << 1;
let d3 = ((to_parse / 1e10 as u64) % 100) << 1;
let d4 = ((to_parse / 1e8 as u64) % 100) << 1;
let d5 = ((to_parse / 1e6 as u64) % 100) << 1;
let d6 = ((to_parse / 1e4 as u64) % 100) << 1;
let d7 = ((to_parse / 1e2 as u64) % 100) << 1;
let d8 = ((to_parse / 1e0 as u64) % 100) << 1;
*curr -= 16;
ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr + 0), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d2 as isize), buf_ptr.offset(*curr + 2), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d3 as isize), buf_ptr.offset(*curr + 4), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d4 as isize), buf_ptr.offset(*curr + 6), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d5 as isize), buf_ptr.offset(*curr + 8), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d6 as isize), buf_ptr.offset(*curr + 10), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d7 as isize), buf_ptr.offset(*curr + 12), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d8 as isize), buf_ptr.offset(*curr + 14), 2);
}
if n >= 1e8 as u64 {
let to_parse = n % 1e8 as u64;
n /= 1e8 as u64;
// Some of these are nops but it looks more elegant this way.
let d1 = ((to_parse / 1e6 as u64) % 100) << 1;
let d2 = ((to_parse / 1e4 as u64) % 100) << 1;
let d3 = ((to_parse / 1e2 as u64) % 100) << 1;
let d4 = ((to_parse / 1e0 as u64) % 100) << 1;
*curr -= 8;
ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr + 0), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d2 as isize), buf_ptr.offset(*curr + 2), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d3 as isize), buf_ptr.offset(*curr + 4), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d4 as isize), buf_ptr.offset(*curr + 6), 2);
}
// `n` < 1e8 < (1 << 32)
let mut n = n as u32;
if n >= 1e4 as u32 {
let to_parse = n % 1e4 as u32;
n /= 1e4 as u32;
let d1 = (to_parse / 100) << 1;
let d2 = (to_parse % 100) << 1;
*curr -= 4;
ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr + 0), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d2 as isize), buf_ptr.offset(*curr + 2), 2);
}
// `n` < 1e4 < (1 << 16)
let mut n = n as u16;
if n >= 100 {
let d1 = (n % 100) << 1;
n /= 100;
*curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr), 2);
}
// decode last 1 or 2 chars
if n < 10 {
*curr -= 1;
*buf_ptr.offset(*curr) = (n as u8) + b'0';
} else {
let d1 = n << 1;
*curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr), 2);
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for u128 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt_u128(*self, true, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for i128 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let is_nonnegative = *self >= 0;
let n = if is_nonnegative {
self.to_u128()
} else {
// convert the negative num to positive by summing 1 to it's 2 complement
(!self.to_u128()).wrapping_add(1)
};
fmt_u128(n, is_nonnegative, f)
}
}
/// Specialized optimization for u128. Instead of taking two items at a time, it splits
/// into at most 2 u64s, and then chunks by 10e16, 10e8, 10e4, 10e2, and then 10e1.
/// It also has to handle 1 last item, as 10^40 > 2^128 > 10^39, whereas
/// 10^20 > 2^64 > 10^19.
fn fmt_u128(n: u128, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// 2^128 is about 3*10^38, so 39 gives an extra byte of space
let mut buf = [MaybeUninit::<u8>::uninit(); 39];
let mut curr = buf.len() as isize;
let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);
let (n, rem) = udiv_1e19(n);
parse_u64_into(rem, &mut buf, &mut curr);
if n != 0 {
// 0 pad up to point
let target = (buf.len() - 19) as isize;
// SAFETY: Guaranteed that we wrote at most 19 bytes, and there must be space
// remaining since it has length 39
unsafe {
ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize);
}
curr = target;
let (n, rem) = udiv_1e19(n);
parse_u64_into(rem, &mut buf, &mut curr);
// Should this following branch be annotated with unlikely?
if n != 0 {
let target = (buf.len() - 38) as isize;
// SAFETY: At this point we wrote at most 38 bytes, pad up to that point,
// There can only be at most 1 digit remaining.
unsafe {
ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize);
curr = target - 1;
*buf_ptr.offset(curr) = (n as u8) + b'0';
}
}
}
// SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid
// UTF-8 since `DEC_DIGITS_LUT` is
let buf_slice = unsafe {
str::from_utf8_unchecked(slice::from_raw_parts(
buf_ptr.offset(curr),
buf.len() - curr as usize,
))
};
f.pad_integral(is_nonnegative, "", buf_slice)
}
/// Partition of `n` into n > 1e19 and rem <= 1e19
fn udiv_1e19(n: u128) -> (u128, u64) {
const DIV: u64 = 1e19 as u64;
let high = (n >> 64) as u64;
if high == 0 {
let low = n as u64;
return ((low / DIV) as u128, low % DIV);
}
let sr = 65 - high.leading_zeros();
let mut q = n << (128 - sr);
let mut r = n >> sr;
let mut carry = 0;
for _ in 0..sr {
r = (r << 1) | (q >> 127);
q = (q << 1) | carry as u128;
let s = (DIV as u128).wrapping_sub(r).wrapping_sub(1) as i128 >> 127;
carry = (s & 1) as u64;
r -= (DIV as u128) & s as u128;
}
((q << 1) | carry as u128, r as u64)
}