introduce a VecGraph abstraction that cheaply stores graphs

This is perhaps better than the linked list approach I was using
before. Lower memory overhead, Theta(N+E) storage. Does require a
sort. =)
This commit is contained in:
Niko Matsakis 2019-06-11 13:40:24 -04:00
parent 4e85665e08
commit 4c91bb9571
5 changed files with 197 additions and 3 deletions

View File

@ -5,6 +5,7 @@
pub mod iterate;
mod reference;
pub mod scc;
pub mod vec_graph;
#[cfg(test)]
mod test;
@ -17,6 +18,10 @@ pub trait WithNumNodes: DirectedGraph {
fn num_nodes(&self) -> usize;
}
pub trait WithNumEdges: DirectedGraph {
fn num_edges(&self) -> usize;
}
pub trait WithSuccessors: DirectedGraph
where
Self: for<'graph> GraphSuccessors<'graph, Item = <Self as DirectedGraph>::Node>,

View File

@ -4,7 +4,8 @@
//! O(n) time.
use crate::fx::FxHashSet;
use crate::graph::{DirectedGraph, WithNumNodes, WithSuccessors, GraphSuccessors};
use crate::graph::{DirectedGraph, WithNumNodes, WithNumEdges, WithSuccessors, GraphSuccessors};
use crate::graph::vec_graph::VecGraph;
use crate::indexed_vec::{Idx, IndexVec};
use std::ops::Range;
@ -58,6 +59,18 @@ pub fn scc(&self, r: N) -> S {
pub fn successors(&self, scc: S) -> &[S] {
self.scc_data.successors(scc)
}
/// Construct the reverse graph of the SCC graph.
pub fn reverse(&self) -> VecGraph<S> {
VecGraph::new(
self.num_sccs(),
self.all_sccs()
.flat_map(|source| self.successors(source).iter().map(move |&target| {
(target, source)
}))
.collect(),
)
}
}
impl<N: Idx, S: Idx> DirectedGraph for Sccs<N, S> {
@ -70,6 +83,12 @@ fn num_nodes(&self) -> usize {
}
}
impl<N: Idx, S: Idx> WithNumEdges for Sccs<N, S> {
fn num_edges(&self) -> usize {
self.scc_data.all_successors.len()
}
}
impl<N: Idx, S: Idx> GraphSuccessors<'graph> for Sccs<N, S> {
type Item = S;

View File

@ -0,0 +1,113 @@
use crate::indexed_vec::{Idx, IndexVec};
use crate::graph::{DirectedGraph, WithNumNodes, WithNumEdges, WithSuccessors, GraphSuccessors};
mod test;
pub struct VecGraph<N: Idx> {
/// Maps from a given node to an index where the set of successors
/// for that node starts. The index indexes into the `edges`
/// vector. To find the range for a given node, we look up the
/// start for that node and then the start for the next node
/// (i.e., with an index 1 higher) and get the range between the
/// two. This vector always has an extra entry so that this works
/// even for the max element.
node_starts: IndexVec<N, usize>,
edge_targets: Vec<N>,
}
impl<N: Idx> VecGraph<N> {
pub fn new(
num_nodes: usize,
mut edge_pairs: Vec<(N, N)>,
) -> Self {
// Sort the edges by the source -- this is important.
edge_pairs.sort();
let num_edges = edge_pairs.len();
// Store the *target* of each edge into `edge_targets`
let edge_targets: Vec<N> = edge_pairs.iter().map(|&(_, target)| target).collect();
// Create the *edge starts* array. We are iterating over over
// the (sorted) edge pairs. We maintain the invariant that the
// length of the `node_starts` arary is enough to store the
// current source node -- so when we see that the source node
// for an edge is greater than the current length, we grow the
// edge-starts array by just enough.
let mut node_starts = IndexVec::with_capacity(num_edges);
for (index, &(source, _)) in edge_pairs.iter().enumerate() {
// If we have a list like `[(0, x), (2, y)]`:
//
// - Start out with `node_starts` of `[]`
// - Iterate to `(0, x)` at index 0:
// - Push one entry because `node_starts.len()` (0) is <= the source (0)
// - Leaving us with `node_starts` of `[0]`
// - Iterate to `(2, y)` at index 1:
// - Push one entry because `node_starts.len()` (1) is <= the source (2)
// - Push one entry because `node_starts.len()` (2) is <= the source (2)
// - Leaving us with `node_starts` of `[0, 1, 1]`
// - Loop terminates
while node_starts.len() <= source.index() {
node_starts.push(index);
}
}
// Pad out the `node_starts` array so that it has `num_nodes +
// 1` entries. Continuing our example above, if `num_nodes` is
// be `3`, we would push one more index: `[0, 1, 1, 2]`.
//
// Interpretation of that vector:
//
// [0, 1, 1, 2]
// ---- range for N=2
// ---- range for N=1
// ---- range for N=0
while node_starts.len() <= num_nodes {
node_starts.push(edge_targets.len());
}
assert_eq!(node_starts.len(), num_nodes + 1);
Self { node_starts, edge_targets }
}
/// Gets the successors for `source` as a slice.
pub fn successors(&self, source: N) -> &[N] {
let start_index = self.node_starts[source];
let end_index = self.node_starts[source.plus(1)];
&self.edge_targets[start_index..end_index]
}
}
impl<N: Idx> DirectedGraph for VecGraph<N> {
type Node = N;
}
impl<N: Idx> WithNumNodes for VecGraph<N> {
fn num_nodes(&self) -> usize {
self.node_starts.len() - 1
}
}
impl<N: Idx> WithNumEdges for VecGraph<N> {
fn num_edges(&self) -> usize {
self.edge_targets.len()
}
}
impl<N: Idx> GraphSuccessors<'graph> for VecGraph<N> {
type Item = N;
type Iter = std::iter::Cloned<std::slice::Iter<'graph, N>>;
}
impl<N: Idx> WithSuccessors for VecGraph<N> {
fn successors<'graph>(
&'graph self,
node: N
) -> <Self as GraphSuccessors<'graph>>::Iter {
self.successors(node).iter().cloned()
}
}

View File

@ -0,0 +1,46 @@
#![cfg(test)]
use super::*;
fn create_graph() -> VecGraph<usize> {
// Create a simple graph
//
// 5
// |
// V
// 0 --> 1 --> 2
// |
// v
// 3 --> 4
//
// 6
VecGraph::new(
7,
vec![
(0, 1),
(1, 2),
(1, 3),
(3, 4),
(5, 1),
],
)
}
#[test]
fn num_nodes() {
let graph = create_graph();
assert_eq!(graph.num_nodes(), 7);
}
#[test]
fn succesors() {
let graph = create_graph();
assert_eq!(graph.successors(0), &[1]);
assert_eq!(graph.successors(1), &[2, 3]);
assert_eq!(graph.successors(2), &[]);
assert_eq!(graph.successors(3), &[4]);
assert_eq!(graph.successors(4), &[]);
assert_eq!(graph.successors(5), &[1]);
assert_eq!(graph.successors(6), &[]);
}

View File

@ -19,8 +19,11 @@ pub trait Idx: Copy + 'static + Ord + Debug + Hash {
fn index(self) -> usize;
fn increment_by(&mut self, amount: usize) {
let v = self.index() + amount;
*self = Self::new(v);
*self = self.plus(amount);
}
fn plus(self, amount: usize) -> Self {
Self::new(self.index() + amount)
}
}
@ -167,6 +170,14 @@ impl $type {
}
}
impl std::ops::Add<usize> for $type {
type Output = Self;
fn add(self, other: usize) -> Self {
Self::new(self.index() + other)
}
}
impl Idx for $type {
#[inline]
fn new(value: usize) -> Self {