Formatting

This commit is contained in:
Esteban Küber 2023-01-03 20:32:15 -08:00
parent 9cc8d86190
commit 4ac7d1c3ab

View File

@ -294,143 +294,151 @@ fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
let id = map.get_parent_item(hir_id);
let hir_id: hir::HirId = id.into();
if let Some(node) = map.find(hir_id) && let Some(body_id) = node.body_id() {
let body = map.body(body_id);
expr_finder.visit_expr(body.value);
let mut eraser = TypeEraser { tcx };
let mut prev = eraser.fold_ty(ty);
let mut prev_span = None;
let Some(node) = map.find(hir_id) else { return false; };
let Some(body_id) = node.body_id() else { return false; };
let body = map.body(body_id);
expr_finder.visit_expr(body.value);
let mut eraser = TypeEraser { tcx };
let mut prev = eraser.fold_ty(ty);
let mut prev_span = None;
for binding in expr_finder.uses {
// In every expression where the binding is referenced, we will look at that
// expression's type and see if it is where the incorrect found type was fully
// "materialized" and point at it. We will also try to provide a suggestion there.
let parent = map.get_parent_node(binding.hir_id);
if let Some(hir::Node::Expr(expr))
| Some(hir::Node::Stmt(hir::Stmt {
kind: hir::StmtKind::Expr(expr) | hir::StmtKind::Semi(expr),
..
})) = &map.find(parent)
&& let hir::ExprKind::MethodCall(s, rcvr, args, _span) = expr.kind
&& rcvr.hir_id == binding.hir_id
&& let Some(def_id) = self.typeck_results.borrow().type_dependent_def_id(expr.hir_id)
{
// We special case methods, because they can influence inference through the
// call's arguments and we can provide a more explicit span.
let sig = self.tcx.fn_sig(def_id);
let def_self_ty = sig.input(0).skip_binder();
let rcvr_ty = self.node_ty(rcvr.hir_id);
// Get the evaluated type *after* calling the method call, so that the influence
// of the arguments can be reflected in the receiver type. The receiver
// expression has the type *before* theis analysis is done.
let ty = match self.lookup_probe(s.ident, rcvr_ty, expr, probe::ProbeScope::TraitsInScope) {
Ok(pick) => pick.self_ty,
Err(_) => rcvr_ty,
};
// Remove one layer of references to account for `&mut self` and
// `&self`, so that we can compare it against the binding.
let (ty, def_self_ty) = match (ty.kind(), def_self_ty.kind()) {
(ty::Ref(_, ty, a), ty::Ref(_, self_ty, b)) if a == b => (*ty, *self_ty),
_ => (ty, def_self_ty),
};
let mut param_args = FxHashMap::default();
let mut param_expected = FxHashMap::default();
let mut param_found = FxHashMap::default();
if self.can_eq(self.param_env, ty, found).is_ok() {
// We only point at the first place where the found type was inferred.
for (i, param_ty) in sig.inputs().skip_binder().iter().skip(1).enumerate() {
if def_self_ty.contains(*param_ty) && let ty::Param(_) = param_ty.kind() {
// We found an argument that references a type parameter in `Self`,
// so we assume that this is the argument that caused the found
// type, which we know already because of `can_eq` above was first
// inferred in this method call.
let arg = &args[i];
let arg_ty = self.node_ty(arg.hir_id);
err.span_label(
arg.span,
&format!(
"this is of type `{arg_ty}`, which makes `{ident}` to be \
inferred as `{ty}`",
),
);
param_args.insert(param_ty, (arg, arg_ty));
}
for binding in expr_finder.uses {
// In every expression where the binding is referenced, we will look at that
// expression's type and see if it is where the incorrect found type was fully
// "materialized" and point at it. We will also try to provide a suggestion there.
let parent = map.get_parent_node(binding.hir_id);
if let Some(hir::Node::Expr(expr))
| Some(hir::Node::Stmt(hir::Stmt {
kind: hir::StmtKind::Expr(expr) | hir::StmtKind::Semi(expr),
..
})) = &map.find(parent)
&& let hir::ExprKind::MethodCall(segment, rcvr, args, _span) = expr.kind
&& rcvr.hir_id == binding.hir_id
&& let Some(def_id) = self.typeck_results.borrow().type_dependent_def_id(expr.hir_id)
{
// We special case methods, because they can influence inference through the
// call's arguments and we can provide a more explicit span.
let sig = self.tcx.fn_sig(def_id);
let def_self_ty = sig.input(0).skip_binder();
let rcvr_ty = self.node_ty(rcvr.hir_id);
// Get the evaluated type *after* calling the method call, so that the influence
// of the arguments can be reflected in the receiver type. The receiver
// expression has the type *before* theis analysis is done.
let ty = match self.lookup_probe(
segment.ident,
rcvr_ty,
expr,
probe::ProbeScope::TraitsInScope,
) {
Ok(pick) => pick.self_ty,
Err(_) => rcvr_ty,
};
// Remove one layer of references to account for `&mut self` and
// `&self`, so that we can compare it against the binding.
let (ty, def_self_ty) = match (ty.kind(), def_self_ty.kind()) {
(ty::Ref(_, ty, a), ty::Ref(_, self_ty, b)) if a == b => (*ty, *self_ty),
_ => (ty, def_self_ty),
};
let mut param_args = FxHashMap::default();
let mut param_expected = FxHashMap::default();
let mut param_found = FxHashMap::default();
if self.can_eq(self.param_env, ty, found).is_ok() {
// We only point at the first place where the found type was inferred.
for (i, param_ty) in sig.inputs().skip_binder().iter().skip(1).enumerate() {
if def_self_ty.contains(*param_ty) && let ty::Param(_) = param_ty.kind() {
// We found an argument that references a type parameter in `Self`,
// so we assume that this is the argument that caused the found
// type, which we know already because of `can_eq` above was first
// inferred in this method call.
let arg = &args[i];
let arg_ty = self.node_ty(arg.hir_id);
err.span_label(
arg.span,
&format!(
"this is of type `{arg_ty}`, which makes `{ident}` to be \
inferred as `{ty}`",
),
);
param_args.insert(param_ty, (arg, arg_ty));
}
}
// Here we find, for a type param `T`, the type that `T` is in the current
// method call *and* in the original expected type. That way, we can see if we
// can give any structured suggestion for the function argument.
let mut c = CollectAllMismatches {
infcx: &self.infcx,
param_env: self.param_env,
errors: vec![],
};
let _ = c.relate(def_self_ty, ty);
for error in c.errors {
if let TypeError::Sorts(error) = error {
param_found.insert(error.expected, error.found);
}
}
c.errors = vec![];
let _ = c.relate(def_self_ty, expected);
for error in c.errors {
if let TypeError::Sorts(error) = error {
param_expected.insert(error.expected, error.found);
}
}
for (param, (arg,arg_ty)) in param_args.iter() {
let Some(expected) = param_expected.get(param) else { continue; };
let Some(found) = param_found.get(param) else { continue; };
if self.can_eq(self.param_env, *arg_ty, *found).is_err() { continue; }
self.suggest_deref_ref_or_into(err, arg, *expected, *found, None);
}
let ty = eraser.fold_ty(ty);
if ty.references_error() {
break;
}
if ty != prev
&& param_args.is_empty()
&& self.can_eq(self.param_env, ty, found).is_ok()
{
// We only point at the first place where the found type was inferred.
err.span_label(
s.ident.span,
with_forced_trimmed_paths!(format!(
"here the type of `{ident}` is inferred to be `{ty}`",
)),
);
break;
}
prev = ty;
} else {
let ty = eraser.fold_ty(self.node_ty(binding.hir_id));
if ty.references_error() {
break;
}
if ty != prev && let Some(span) = prev_span && self.can_eq(self.param_env, ty, found).is_ok() {
// We only point at the first place where the found type was inferred.
// We use the *previous* span because if the type is known *here* it means
// it was *evaluated earlier*. We don't do this for method calls because we
// evaluate the method's self type eagerly, but not in any other case.
err.span_label(
span,
with_forced_trimmed_paths!(format!(
"here the type of `{ident}` is inferred to be `{ty}`",
)),
);
break;
}
prev = ty;
}
if binding.hir_id == expr.hir_id {
// Do not look at expressions that come after the expression we were originally
// evaluating and had a type error.
// Here we find, for a type param `T`, the type that `T` is in the current
// method call *and* in the original expected type. That way, we can see if we
// can give any structured suggestion for the function argument.
let mut c = CollectAllMismatches {
infcx: &self.infcx,
param_env: self.param_env,
errors: vec![],
};
let _ = c.relate(def_self_ty, ty);
for error in c.errors {
if let TypeError::Sorts(error) = error {
param_found.insert(error.expected, error.found);
}
}
c.errors = vec![];
let _ = c.relate(def_self_ty, expected);
for error in c.errors {
if let TypeError::Sorts(error) = error {
param_expected.insert(error.expected, error.found);
}
}
for (param, (arg,arg_ty)) in param_args.iter() {
let Some(expected) = param_expected.get(param) else { continue; };
let Some(found) = param_found.get(param) else { continue; };
if self.can_eq(self.param_env, *arg_ty, *found).is_err() { continue; }
self.suggest_deref_ref_or_into(err, arg, *expected, *found, None);
}
let ty = eraser.fold_ty(ty);
if ty.references_error() {
break;
}
prev_span = Some(binding.span);
if ty != prev
&& param_args.is_empty()
&& self.can_eq(self.param_env, ty, found).is_ok()
{
// We only point at the first place where the found type was inferred.
err.span_label(
segment.ident.span,
with_forced_trimmed_paths!(format!(
"here the type of `{ident}` is inferred to be `{ty}`",
)),
);
break;
}
prev = ty;
} else {
let ty = eraser.fold_ty(self.node_ty(binding.hir_id));
if ty.references_error() {
break;
}
if ty != prev
&& let Some(span) = prev_span
&& self.can_eq(self.param_env, ty, found).is_ok()
{
// We only point at the first place where the found type was inferred.
// We use the *previous* span because if the type is known *here* it means
// it was *evaluated earlier*. We don't do this for method calls because we
// evaluate the method's self type eagerly, but not in any other case.
err.span_label(
span,
with_forced_trimmed_paths!(format!(
"here the type of `{ident}` is inferred to be `{ty}`",
)),
);
break;
}
prev = ty;
}
if binding.hir_id == expr.hir_id {
// Do not look at expressions that come after the expression we were originally
// evaluating and had a type error.
break;
}
prev_span = Some(binding.span);
}
true
}