Move folding and visiting traits into type library

This commit is contained in:
Alan Egerton 2023-02-10 16:14:18 +00:00
parent 9fa6bb2aa0
commit 459e142413
No known key found for this signature in database
GPG Key ID: 7D4C2F6C22122532
10 changed files with 805 additions and 755 deletions

View File

@ -48,12 +48,10 @@
#![feature(associated_type_bounds)]
#![feature(rustc_attrs)]
#![feature(control_flow_enum)]
#![feature(associated_type_defaults)]
#![feature(trusted_step)]
#![feature(try_blocks)]
#![feature(try_reserve_kind)]
#![feature(nonzero_ops)]
#![feature(unwrap_infallible)]
#![feature(decl_macro)]
#![feature(drain_filter)]
#![feature(intra_doc_pointers)]

View File

@ -100,35 +100,11 @@ fn visit_with<F: $crate::ty::visit::TypeVisitor<$tcx>>(
};
($($ty:ty,)+) => {
$(
impl<I: $crate::ty::Interner> $crate::ty::fold::ir::TypeFoldable<I> for $ty {
fn try_fold_with<F: $crate::ty::fold::ir::FallibleTypeFolder<I>>(
self,
_: &mut F,
) -> ::std::result::Result<Self, F::Error> {
Ok(self)
}
#[inline]
fn fold_with<F: $crate::ty::fold::ir::TypeFolder<I>>(
self,
_: &mut F,
) -> Self {
self
}
TrivialTypeTraversalImpls! {
for<'tcx> {
$($ty,)+
}
impl<I: $crate::ty::Interner> $crate::ty::visit::ir::TypeVisitable<I> for $ty {
#[inline]
fn visit_with<F: $crate::ty::visit::ir::TypeVisitor<I>>(
&self,
_: &mut F)
-> ::std::ops::ControlFlow<F::BreakTy>
{
::std::ops::ControlFlow::Continue(())
}
}
)+
}
};
}
@ -139,145 +115,3 @@ macro_rules! TrivialTypeTraversalAndLiftImpls {
CloneLiftImpls! { $($t)* }
}
}
#[macro_export]
macro_rules! EnumTypeTraversalImpl {
(impl<$($p:tt),*> TypeFoldable<$tcx:tt> for $s:path {
$($variants:tt)*
} $(where $($wc:tt)*)*) => {
impl<$($p),*> $crate::ty::fold::ir::TypeFoldable<$tcx> for $s
$(where $($wc)*)*
{
fn try_fold_with<V: $crate::ty::fold::ir::FallibleTypeFolder<$tcx>>(
self,
folder: &mut V,
) -> ::std::result::Result<Self, V::Error> {
EnumTypeTraversalImpl!(@FoldVariants(self, folder) input($($variants)*) output())
}
}
};
(impl<$($p:tt),*> TypeVisitable<$tcx:tt> for $s:path {
$($variants:tt)*
} $(where $($wc:tt)*)*) => {
impl<$($p),*> $crate::ty::visit::ir::TypeVisitable<$tcx> for $s
$(where $($wc)*)*
{
fn visit_with<V: $crate::ty::visit::ir::TypeVisitor<$tcx>>(
&self,
visitor: &mut V,
) -> ::std::ops::ControlFlow<V::BreakTy> {
EnumTypeTraversalImpl!(@VisitVariants(self, visitor) input($($variants)*) output())
}
}
};
(@FoldVariants($this:expr, $folder:expr) input() output($($output:tt)*)) => {
Ok(match $this {
$($output)*
})
};
(@FoldVariants($this:expr, $folder:expr)
input( ($variant:path) ( $($variant_arg:ident),* ) , $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@FoldVariants($this, $folder)
input($($input)*)
output(
$variant ( $($variant_arg),* ) => {
$variant (
$($crate::ty::fold::ir::TypeFoldable::try_fold_with($variant_arg, $folder)?),*
)
}
$($output)*
)
)
};
(@FoldVariants($this:expr, $folder:expr)
input( ($variant:path) { $($variant_arg:ident),* $(,)? } , $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@FoldVariants($this, $folder)
input($($input)*)
output(
$variant { $($variant_arg),* } => {
$variant {
$($variant_arg: $crate::ty::fold::ir::TypeFoldable::fold_with(
$variant_arg, $folder
)?),* }
}
$($output)*
)
)
};
(@FoldVariants($this:expr, $folder:expr)
input( ($variant:path), $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@FoldVariants($this, $folder)
input($($input)*)
output(
$variant => { $variant }
$($output)*
)
)
};
(@VisitVariants($this:expr, $visitor:expr) input() output($($output:tt)*)) => {
match $this {
$($output)*
}
};
(@VisitVariants($this:expr, $visitor:expr)
input( ($variant:path) ( $($variant_arg:ident),* ) , $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@VisitVariants($this, $visitor)
input($($input)*)
output(
$variant ( $($variant_arg),* ) => {
$($crate::ty::visit::ir::TypeVisitable::visit_with(
$variant_arg, $visitor
)?;)*
::std::ops::ControlFlow::Continue(())
}
$($output)*
)
)
};
(@VisitVariants($this:expr, $visitor:expr)
input( ($variant:path) { $($variant_arg:ident),* $(,)? } , $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@VisitVariants($this, $visitor)
input($($input)*)
output(
$variant { $($variant_arg),* } => {
$($crate::ty::visit::ir::TypeVisitable::visit_with(
$variant_arg, $visitor
)?;)*
::std::ops::ControlFlow::Continue(())
}
$($output)*
)
)
};
(@VisitVariants($this:expr, $visitor:expr)
input( ($variant:path), $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@VisitVariants($this, $visitor)
input($($input)*)
output(
$variant => { ::std::ops::ControlFlow::Continue(()) }
$($output)*
)
)
};
}

View File

@ -1,47 +1,3 @@
//! A folding traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a modifying traversal. It consumes the data structure, producing a
//! (possibly) modified version of it. Both fallible and infallible versions are
//! available. The name is potentially confusing, because this traversal is more
//! like `Iterator::map` than `Iterator::fold`.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! modification. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three groups of traits involved in each traversal.
//! - `TypeFoldable`. This is implemented once for many types, including:
//! - Types of interest, for which the methods delegate to the folder.
//! - All other types, including generic containers like `Vec` and `Option`.
//! It defines a "skeleton" of how they should be folded.
//! - `TypeSuperFoldable`. This is implemented only for each type of interest,
//! and defines the folding "skeleton" for these types.
//! - `TypeFolder`/`FallibleTypeFolder. One of these is implemented for each
//! folder. This defines how types of interest are folded.
//!
//! This means each fold is a mixture of (a) generic folding operations, and (b)
//! custom fold operations that are specific to the folder.
//! - The `TypeFoldable` impls handle most of the traversal, and call into
//! `TypeFolder`/`FallibleTypeFolder` when they encounter a type of interest.
//! - A `TypeFolder`/`FallibleTypeFolder` may call into another `TypeFoldable`
//! impl, because some of the types of interest are recursive and can contain
//! other types of interest.
//! - A `TypeFolder`/`FallibleTypeFolder` may also call into a `TypeSuperFoldable`
//! impl, because each folder might provide custom handling only for some types
//! of interest, or only for some variants of each type of interest, and then
//! use default traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeFoldable` and `U:
//! TypeFoldable`, and an instance `s = S(ty, u)`, it would be folded like so:
//! ```text
//! s.fold_with(folder) calls
//! - ty.fold_with(folder) calls
//! - folder.fold_ty(ty) may call
//! - ty.super_fold_with(folder)
//! - u.fold_with(folder)
//! ```
use crate::ty::{self, Binder, BoundTy, Ty, TyCtxt, TypeVisitable};
use rustc_data_structures::fx::FxIndexMap;
use rustc_hir::def_id::DefId;
@ -54,201 +10,9 @@
pub trait FallibleTypeFolder<'tcx> = ir::FallibleTypeFolder<TyCtxt<'tcx>>;
pub mod ir {
use crate::ty::{ir::TypeVisitable, Interner};
/// This trait is implemented for every type that can be folded,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
pub trait TypeFoldable<I: Interner>: TypeVisitable<I> {
/// The entry point for folding. To fold a value `t` with a folder `f`
/// call: `t.try_fold_with(f)`.
///
/// For most types, this just traverses the value, calling `try_fold_with`
/// on each field/element.
///
/// For types of interest (such as `Ty`), the implementation of method
/// calls a folder method specifically for that type (such as
/// `F::try_fold_ty`). This is where control transfers from `TypeFoldable`
/// to `TypeFolder`.
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error>;
/// A convenient alternative to `try_fold_with` for use with infallible
/// folders. Do not override this method, to ensure coherence with
/// `try_fold_with`.
fn fold_with<F: TypeFolder<I>>(self, folder: &mut F) -> Self {
self.try_fold_with(folder).into_ok()
}
}
// This trait is implemented for types of interest.
pub trait TypeSuperFoldable<I: Interner>: TypeFoldable<I> {
/// Provides a default fold for a type of interest. This should only be
/// called within `TypeFolder` methods, when a non-custom traversal is
/// desired for the value of the type of interest passed to that method.
/// For example, in `MyFolder::try_fold_ty(ty)`, it is valid to call
/// `ty.try_super_fold_with(self)`, but any other folding should be done
/// with `xyz.try_fold_with(self)`.
fn try_super_fold_with<F: FallibleTypeFolder<I>>(
self,
folder: &mut F,
) -> Result<Self, F::Error>;
/// A convenient alternative to `try_super_fold_with` for use with
/// infallible folders. Do not override this method, to ensure coherence
/// with `try_super_fold_with`.
fn super_fold_with<F: TypeFolder<I>>(self, folder: &mut F) -> Self {
self.try_super_fold_with(folder).into_ok()
}
}
/// This trait is implemented for every infallible folding traversal. There is
/// a fold method defined for every type of interest. Each such method has a
/// default that does an "identity" fold. Implementations of these methods
/// often fall back to a `super_fold_with` method if the primary argument
/// doesn't satisfy a particular condition.
///
/// A blanket implementation of [`FallibleTypeFolder`] will defer to
/// the infallible methods of this trait to ensure that the two APIs
/// are coherent.
pub trait TypeFolder<I: Interner>: FallibleTypeFolder<I, Error = !> {
fn tcx(&self) -> I;
fn fold_binder<T>(&mut self, t: I::Binder<T>) -> I::Binder<T>
where
T: TypeFoldable<I>,
I::Binder<T>: TypeSuperFoldable<I>,
{
t.super_fold_with(self)
}
fn fold_ty(&mut self, t: I::Ty) -> I::Ty
where
I::Ty: TypeSuperFoldable<I>,
{
t.super_fold_with(self)
}
fn fold_region(&mut self, r: I::Region) -> I::Region
where
I::Region: TypeSuperFoldable<I>,
{
r.super_fold_with(self)
}
fn fold_const(&mut self, c: I::Const) -> I::Const
where
I::Const: TypeSuperFoldable<I>,
{
c.super_fold_with(self)
}
fn fold_predicate(&mut self, p: I::Predicate) -> I::Predicate
where
I::Predicate: TypeSuperFoldable<I>,
{
p.super_fold_with(self)
}
}
/// This trait is implemented for every folding traversal. There is a fold
/// method defined for every type of interest. Each such method has a default
/// that does an "identity" fold.
///
/// A blanket implementation of this trait (that defers to the relevant
/// method of [`TypeFolder`]) is provided for all infallible folders in
/// order to ensure the two APIs are coherent.
pub trait FallibleTypeFolder<I: Interner>: Sized {
type Error;
fn tcx<'a>(&'a self) -> I;
fn try_fold_binder<T>(&mut self, t: I::Binder<T>) -> Result<I::Binder<T>, Self::Error>
where
T: TypeFoldable<I>,
I::Binder<T>: TypeSuperFoldable<I>,
{
t.try_super_fold_with(self)
}
fn try_fold_ty(&mut self, t: I::Ty) -> Result<I::Ty, Self::Error>
where
I::Ty: TypeSuperFoldable<I>,
{
t.try_super_fold_with(self)
}
fn try_fold_region(&mut self, r: I::Region) -> Result<I::Region, Self::Error>
where
I::Region: TypeSuperFoldable<I>,
{
r.try_super_fold_with(self)
}
fn try_fold_const(&mut self, c: I::Const) -> Result<I::Const, Self::Error>
where
I::Const: TypeSuperFoldable<I>,
{
c.try_super_fold_with(self)
}
fn try_fold_predicate(&mut self, p: I::Predicate) -> Result<I::Predicate, Self::Error>
where
I::Predicate: TypeSuperFoldable<I>,
{
p.try_super_fold_with(self)
}
}
// This blanket implementation of the fallible trait for infallible folders
// delegates to infallible methods to ensure coherence.
impl<I: Interner, F> FallibleTypeFolder<I> for F
where
F: TypeFolder<I>,
{
type Error = !;
fn tcx<'a>(&'a self) -> I {
TypeFolder::tcx(self)
}
fn try_fold_binder<T>(&mut self, t: I::Binder<T>) -> Result<I::Binder<T>, !>
where
T: TypeFoldable<I>,
I::Binder<T>: TypeSuperFoldable<I>,
{
Ok(self.fold_binder(t))
}
fn try_fold_ty(&mut self, t: I::Ty) -> Result<I::Ty, !>
where
I::Ty: TypeSuperFoldable<I>,
{
Ok(self.fold_ty(t))
}
fn try_fold_region(&mut self, r: I::Region) -> Result<I::Region, !>
where
I::Region: TypeSuperFoldable<I>,
{
Ok(self.fold_region(r))
}
fn try_fold_const(&mut self, c: I::Const) -> Result<I::Const, !>
where
I::Const: TypeSuperFoldable<I>,
{
Ok(self.fold_const(c))
}
fn try_fold_predicate(&mut self, p: I::Predicate) -> Result<I::Predicate, !>
where
I::Predicate: TypeSuperFoldable<I>,
{
Ok(self.fold_predicate(p))
}
}
pub use rustc_type_ir::fold::{
FallibleTypeFolder, TypeFoldable, TypeFolder, TypeSuperFoldable,
};
}
///////////////////////////////////////////////////////////////////////////

View File

@ -1,20 +1,19 @@
//! This module contains implements of the `Lift` and `TypeFoldable`
//! traits for various types in the Rust compiler. Most are written by
//! hand, though we've recently added some macros and proc-macros to help with the tedium.
//! This module contains implementations of the `Lift`, `TypeFoldable` and
//! `TypeVisitable` traits for various types in the Rust compiler. Most are
//! written by hand, though we've recently added some macros and proc-macros
//! to help with the tedium.
use crate::mir::interpret;
use crate::mir::{Field, ProjectionKind};
use crate::ty::fold::{ir::TypeSuperFoldable, FallibleTypeFolder, TypeFoldable};
use crate::ty::print::{with_no_trimmed_paths, FmtPrinter, Printer};
use crate::ty::visit::{ir::TypeSuperVisitable, TypeVisitable, TypeVisitor};
use crate::ty::{self, ir, AliasTy, InferConst, Interner, Lift, Term, TermKind, Ty, TyCtxt};
use rustc_data_structures::functor::IdFunctor;
use crate::ty::{self, ir, AliasTy, InferConst, Lift, Term, TermKind, Ty, TyCtxt};
use rustc_hir::def::Namespace;
use rustc_index::vec::{Idx, IndexVec};
use rustc_target::abi::TyAndLayout;
use std::fmt;
use std::mem::ManuallyDrop;
use std::ops::ControlFlow;
use std::rc::Rc;
use std::sync::Arc;
@ -195,17 +194,27 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Atomic structs
//
// For things that don't carry any arena-allocated data (and are
// copy...), just add them to this list.
// copy...), just add them to one of these lists as appropriat.
TrivialTypeTraversalAndLiftImpls! {
// For things for which the type library provides traversal implementations
// for all Interners, we only need to provide a Lift implementation:
CloneLiftImpls! {
(),
bool,
usize,
::rustc_target::abi::VariantIdx,
u16,
u32,
u64,
String,
rustc_type_ir::DebruijnIndex,
}
// For things about which the type library does not know, or does not
// provide any traversal implementations, we need to provide both a Lift
// implementation and traversal implementations (the latter only for
// TyCtxt<'_> interners).
TrivialTypeTraversalAndLiftImpls! {
::rustc_target::abi::VariantIdx,
crate::middle::region::Scope,
crate::ty::FloatTy,
::rustc_ast::InlineAsmOptions,
@ -257,7 +266,6 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Field,
interpret::Scalar,
rustc_target::abi::Size,
rustc_type_ir::DebruijnIndex,
ty::BoundVar,
ty::Placeholder<ty::BoundVar>,
}
@ -360,7 +368,7 @@ fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
}
///////////////////////////////////////////////////////////////////////////
// TypeFoldable implementations.
// Traversal implementations.
/// AdtDefs are basically the same as a DefId.
impl<'tcx> ir::TypeFoldable<TyCtxt<'tcx>> for ty::AdtDef<'tcx> {
@ -375,209 +383,6 @@ fn visit_with<V: TypeVisitor<'tcx>>(&self, _visitor: &mut V) -> ControlFlow<V::B
}
}
impl<I: Interner, T: ir::TypeFoldable<I>, U: ir::TypeFoldable<I>> ir::TypeFoldable<I> for (T, U) {
fn try_fold_with<F: ir::FallibleTypeFolder<I>>(
self,
folder: &mut F,
) -> Result<(T, U), F::Error> {
Ok((self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?))
}
}
impl<I: Interner, T: ir::TypeVisitable<I>, U: ir::TypeVisitable<I>> ir::TypeVisitable<I>
for (T, U)
{
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.0.visit_with(visitor)?;
self.1.visit_with(visitor)
}
}
impl<I: Interner, A: ir::TypeFoldable<I>, B: ir::TypeFoldable<I>, C: ir::TypeFoldable<I>>
ir::TypeFoldable<I> for (A, B, C)
{
fn try_fold_with<F: ir::FallibleTypeFolder<I>>(
self,
folder: &mut F,
) -> Result<(A, B, C), F::Error> {
Ok((
self.0.try_fold_with(folder)?,
self.1.try_fold_with(folder)?,
self.2.try_fold_with(folder)?,
))
}
}
impl<I: Interner, A: ir::TypeVisitable<I>, B: ir::TypeVisitable<I>, C: ir::TypeVisitable<I>>
ir::TypeVisitable<I> for (A, B, C)
{
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.0.visit_with(visitor)?;
self.1.visit_with(visitor)?;
self.2.visit_with(visitor)
}
}
EnumTypeTraversalImpl! {
impl<I, T> TypeFoldable<I> for Option<T> {
(Some)(a),
(None),
} where I: Interner, T: ir::TypeFoldable<I>
}
EnumTypeTraversalImpl! {
impl<I, T> TypeVisitable<I> for Option<T> {
(Some)(a),
(None),
} where I: Interner, T: ir::TypeVisitable<I>
}
EnumTypeTraversalImpl! {
impl<I, T, E> TypeFoldable<I> for Result<T, E> {
(Ok)(a),
(Err)(a),
} where I: Interner, T: ir::TypeFoldable<I>, E: ir::TypeFoldable<I>,
}
EnumTypeTraversalImpl! {
impl<I, T, E> TypeVisitable<I> for Result<T, E> {
(Ok)(a),
(Err)(a),
} where I: Interner, T: ir::TypeVisitable<I>, E: ir::TypeVisitable<I>,
}
impl<I: Interner, T: ir::TypeFoldable<I>> ir::TypeFoldable<I> for Rc<T> {
fn try_fold_with<F: ir::FallibleTypeFolder<I>>(
mut self,
folder: &mut F,
) -> Result<Self, F::Error> {
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `Rc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `Rc::make_mut` will accomplish (by
// allocating a new `Rc` and cloning the `T` only if required).
// This is done *before* casting to `Rc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
Rc::make_mut(&mut self);
// Casting to `Rc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = Rc::into_raw(self).cast::<ManuallyDrop<T>>();
let mut unique = Rc::from_raw(ptr);
// Call to `Rc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = Rc::get_mut_unchecked(&mut unique);
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = ManuallyDrop::take(slot);
let folded = owned.try_fold_with(folder)?;
*slot = ManuallyDrop::new(folded);
// Cast back to `Rc<T>`.
Ok(Rc::from_raw(Rc::into_raw(unique).cast()))
}
}
}
impl<I: Interner, T: ir::TypeVisitable<I>> ir::TypeVisitable<I> for Rc<T> {
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<I: Interner, T: ir::TypeFoldable<I>> ir::TypeFoldable<I> for Arc<T> {
fn try_fold_with<F: ir::FallibleTypeFolder<I>>(
mut self,
folder: &mut F,
) -> Result<Self, F::Error> {
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `Arc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `Arc::make_mut` will accomplish (by
// allocating a new `Arc` and cloning the `T` only if required).
// This is done *before* casting to `Arc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
Arc::make_mut(&mut self);
// Casting to `Arc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = Arc::into_raw(self).cast::<ManuallyDrop<T>>();
let mut unique = Arc::from_raw(ptr);
// Call to `Arc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = Arc::get_mut_unchecked(&mut unique);
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = ManuallyDrop::take(slot);
let folded = owned.try_fold_with(folder)?;
*slot = ManuallyDrop::new(folded);
// Cast back to `Arc<T>`.
Ok(Arc::from_raw(Arc::into_raw(unique).cast()))
}
}
}
impl<I: Interner, T: ir::TypeVisitable<I>> ir::TypeVisitable<I> for Arc<T> {
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<I: Interner, T: ir::TypeFoldable<I>> ir::TypeFoldable<I> for Box<T> {
fn try_fold_with<F: ir::FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|value| value.try_fold_with(folder))
}
}
impl<I: Interner, T: ir::TypeVisitable<I>> ir::TypeVisitable<I> for Box<T> {
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<I: Interner, T: ir::TypeFoldable<I>> ir::TypeFoldable<I> for Vec<T> {
fn try_fold_with<F: ir::FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|t| t.try_fold_with(folder))
}
}
impl<I: Interner, T: ir::TypeVisitable<I>> ir::TypeVisitable<I> for Vec<T> {
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<I: Interner, T: ir::TypeVisitable<I>> ir::TypeVisitable<I> for &[T] {
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<I: Interner, T: ir::TypeFoldable<I>> ir::TypeFoldable<I> for Box<[T]> {
fn try_fold_with<F: ir::FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|t| t.try_fold_with(folder))
}
}
impl<I: Interner, T: ir::TypeVisitable<I>> ir::TypeVisitable<I> for Box<[T]> {
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<'tcx, T: TypeFoldable<'tcx>> ir::TypeFoldable<TyCtxt<'tcx>> for ty::Binder<'tcx, T> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
folder.try_fold_binder(self)
@ -790,18 +595,6 @@ fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Se
}
}
impl<I: Interner, T: ir::TypeFoldable<I>, Ix: Idx> ir::TypeFoldable<I> for IndexVec<Ix, T> {
fn try_fold_with<F: ir::FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|x| x.try_fold_with(folder))
}
}
impl<I: Interner, T: ir::TypeVisitable<I>, Ix: Idx> ir::TypeVisitable<I> for IndexVec<Ix, T> {
fn visit_with<V: ir::TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<'tcx> ir::TypeFoldable<TyCtxt<'tcx>> for ty::Const<'tcx> {
fn try_fold_with<F: FallibleTypeFolder<'tcx>>(self, folder: &mut F) -> Result<Self, F::Error> {
folder.try_fold_const(self)

View File

@ -1,43 +1,3 @@
//! A visiting traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a read-only traversal of the data structure.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! visitation. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three groups of traits involved in each traversal.
//! - `TypeVisitable`. This is implemented once for many types, including:
//! - Types of interest, for which the methods delegate to the visitor.
//! - All other types, including generic containers like `Vec` and `Option`.
//! It defines a "skeleton" of how they should be visited.
//! - `TypeSuperVisitable`. This is implemented only for each type of interest,
//! and defines the visiting "skeleton" for these types.
//! - `TypeVisitor`. This is implemented for each visitor. This defines how
//! types of interest are visited.
//!
//! This means each visit is a mixture of (a) generic visiting operations, and (b)
//! custom visit operations that are specific to the visitor.
//! - The `TypeVisitable` impls handle most of the traversal, and call into
//! `TypeVisitor` when they encounter a type of interest.
//! - A `TypeVisitor` may call into another `TypeVisitable` impl, because some of
//! the types of interest are recursive and can contain other types of interest.
//! - A `TypeVisitor` may also call into a `TypeSuperVisitable` impl, because each
//! visitor might provide custom handling only for some types of interest, or
//! only for some variants of each type of interest, and then use default
//! traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeVisitable` and `U:
//! TypeVisitable`, and an instance `s = S(ty, u)`, it would be visited like so:
//! ```text
//! s.visit_with(visitor) calls
//! - ty.visit_with(visitor) calls
//! - visitor.visit_ty(ty) may call
//! - ty.super_visit_with(visitor)
//! - u.visit_with(visitor)
//! ```
use crate::ty::{self, flags::FlagComputation, Binder, Ty, TyCtxt, TypeFlags};
use rustc_errors::ErrorGuaranteed;
@ -50,84 +10,7 @@
pub trait TypeVisitor<'tcx> = ir::TypeVisitor<TyCtxt<'tcx>>;
pub mod ir {
use crate::ty::Interner;
use std::fmt;
use std::ops::ControlFlow;
/// This trait is implemented for every type that can be visited,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
pub trait TypeVisitable<I: Interner>: fmt::Debug + Clone {
/// The entry point for visiting. To visit a value `t` with a visitor `v`
/// call: `t.visit_with(v)`.
///
/// For most types, this just traverses the value, calling `visit_with` on
/// each field/element.
///
/// For types of interest (such as `Ty`), the implementation of this method
/// that calls a visitor method specifically for that type (such as
/// `V::visit_ty`). This is where control transfers from `TypeFoldable` to
/// `TypeVisitor`.
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy>;
}
pub trait TypeSuperVisitable<I: Interner>: TypeVisitable<I> {
/// Provides a default visit for a type of interest. This should only be
/// called within `TypeVisitor` methods, when a non-custom traversal is
/// desired for the value of the type of interest passed to that method.
/// For example, in `MyVisitor::visit_ty(ty)`, it is valid to call
/// `ty.super_visit_with(self)`, but any other visiting should be done
/// with `xyz.visit_with(self)`.
fn super_visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy>;
}
/// This trait is implemented for every visiting traversal. There is a visit
/// method defined for every type of interest. Each such method has a default
/// that recurses into the type's fields in a non-custom fashion.
pub trait TypeVisitor<I: Interner>: Sized {
type BreakTy = !;
fn visit_binder<T: TypeVisitable<I>>(
&mut self,
t: &I::Binder<T>,
) -> ControlFlow<Self::BreakTy>
where
I::Binder<T>: TypeSuperVisitable<I>,
{
t.super_visit_with(self)
}
fn visit_ty(&mut self, t: I::Ty) -> ControlFlow<Self::BreakTy>
where
I::Ty: TypeSuperVisitable<I>,
{
t.super_visit_with(self)
}
fn visit_region(&mut self, r: I::Region) -> ControlFlow<Self::BreakTy>
where
I::Region: TypeSuperVisitable<I>,
{
r.super_visit_with(self)
}
fn visit_const(&mut self, c: I::Const) -> ControlFlow<Self::BreakTy>
where
I::Const: TypeSuperVisitable<I>,
{
c.super_visit_with(self)
}
fn visit_predicate(&mut self, p: I::Predicate) -> ControlFlow<Self::BreakTy>
where
I::Predicate: TypeSuperVisitable<I>,
{
p.super_visit_with(self)
}
}
pub use rustc_type_ir::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
}
pub trait TypeVisitableExt<'tcx>: ir::TypeVisitable<TyCtxt<'tcx>> {

View File

@ -0,0 +1,239 @@
//! A folding traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a modifying traversal. It consumes the data structure, producing a
//! (possibly) modified version of it. Both fallible and infallible versions are
//! available. The name is potentially confusing, because this traversal is more
//! like `Iterator::map` than `Iterator::fold`.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! modification. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three groups of traits involved in each traversal.
//! - `TypeFoldable`. This is implemented once for many types, including:
//! - Types of interest, for which the methods delegate to the folder.
//! - All other types, including generic containers like `Vec` and `Option`.
//! It defines a "skeleton" of how they should be folded.
//! - `TypeSuperFoldable`. This is implemented only for each type of interest,
//! and defines the folding "skeleton" for these types.
//! - `TypeFolder`/`FallibleTypeFolder. One of these is implemented for each
//! folder. This defines how types of interest are folded.
//!
//! This means each fold is a mixture of (a) generic folding operations, and (b)
//! custom fold operations that are specific to the folder.
//! - The `TypeFoldable` impls handle most of the traversal, and call into
//! `TypeFolder`/`FallibleTypeFolder` when they encounter a type of interest.
//! - A `TypeFolder`/`FallibleTypeFolder` may call into another `TypeFoldable`
//! impl, because some of the types of interest are recursive and can contain
//! other types of interest.
//! - A `TypeFolder`/`FallibleTypeFolder` may also call into a `TypeSuperFoldable`
//! impl, because each folder might provide custom handling only for some types
//! of interest, or only for some variants of each type of interest, and then
//! use default traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeFoldable` and `U:
//! TypeFoldable`, and an instance `s = S(ty, u)`, it would be folded like so:
//! ```text
//! s.fold_with(folder) calls
//! - ty.fold_with(folder) calls
//! - folder.fold_ty(ty) may call
//! - ty.super_fold_with(folder)
//! - u.fold_with(folder)
//! ```
use crate::{visit::TypeVisitable, Interner};
/// This trait is implemented for every type that can be folded,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
pub trait TypeFoldable<I: Interner>: TypeVisitable<I> {
/// The entry point for folding. To fold a value `t` with a folder `f`
/// call: `t.try_fold_with(f)`.
///
/// For most types, this just traverses the value, calling `try_fold_with`
/// on each field/element.
///
/// For types of interest (such as `Ty`), the implementation of method
/// calls a folder method specifically for that type (such as
/// `F::try_fold_ty`). This is where control transfers from `TypeFoldable`
/// to `TypeFolder`.
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error>;
/// A convenient alternative to `try_fold_with` for use with infallible
/// folders. Do not override this method, to ensure coherence with
/// `try_fold_with`.
fn fold_with<F: TypeFolder<I>>(self, folder: &mut F) -> Self {
self.try_fold_with(folder).into_ok()
}
}
// This trait is implemented for types of interest.
pub trait TypeSuperFoldable<I: Interner>: TypeFoldable<I> {
/// Provides a default fold for a type of interest. This should only be
/// called within `TypeFolder` methods, when a non-custom traversal is
/// desired for the value of the type of interest passed to that method.
/// For example, in `MyFolder::try_fold_ty(ty)`, it is valid to call
/// `ty.try_super_fold_with(self)`, but any other folding should be done
/// with `xyz.try_fold_with(self)`.
fn try_super_fold_with<F: FallibleTypeFolder<I>>(
self,
folder: &mut F,
) -> Result<Self, F::Error>;
/// A convenient alternative to `try_super_fold_with` for use with
/// infallible folders. Do not override this method, to ensure coherence
/// with `try_super_fold_with`.
fn super_fold_with<F: TypeFolder<I>>(self, folder: &mut F) -> Self {
self.try_super_fold_with(folder).into_ok()
}
}
/// This trait is implemented for every infallible folding traversal. There is
/// a fold method defined for every type of interest. Each such method has a
/// default that does an "identity" fold. Implementations of these methods
/// often fall back to a `super_fold_with` method if the primary argument
/// doesn't satisfy a particular condition.
///
/// A blanket implementation of [`FallibleTypeFolder`] will defer to
/// the infallible methods of this trait to ensure that the two APIs
/// are coherent.
pub trait TypeFolder<I: Interner>: FallibleTypeFolder<I, Error = !> {
fn tcx(&self) -> I;
fn fold_binder<T>(&mut self, t: I::Binder<T>) -> I::Binder<T>
where
T: TypeFoldable<I>,
I::Binder<T>: TypeSuperFoldable<I>,
{
t.super_fold_with(self)
}
fn fold_ty(&mut self, t: I::Ty) -> I::Ty
where
I::Ty: TypeSuperFoldable<I>,
{
t.super_fold_with(self)
}
fn fold_region(&mut self, r: I::Region) -> I::Region
where
I::Region: TypeSuperFoldable<I>,
{
r.super_fold_with(self)
}
fn fold_const(&mut self, c: I::Const) -> I::Const
where
I::Const: TypeSuperFoldable<I>,
{
c.super_fold_with(self)
}
fn fold_predicate(&mut self, p: I::Predicate) -> I::Predicate
where
I::Predicate: TypeSuperFoldable<I>,
{
p.super_fold_with(self)
}
}
/// This trait is implemented for every folding traversal. There is a fold
/// method defined for every type of interest. Each such method has a default
/// that does an "identity" fold.
///
/// A blanket implementation of this trait (that defers to the relevant
/// method of [`TypeFolder`]) is provided for all infallible folders in
/// order to ensure the two APIs are coherent.
pub trait FallibleTypeFolder<I: Interner>: Sized {
type Error;
fn tcx<'a>(&'a self) -> I;
fn try_fold_binder<T>(&mut self, t: I::Binder<T>) -> Result<I::Binder<T>, Self::Error>
where
T: TypeFoldable<I>,
I::Binder<T>: TypeSuperFoldable<I>,
{
t.try_super_fold_with(self)
}
fn try_fold_ty(&mut self, t: I::Ty) -> Result<I::Ty, Self::Error>
where
I::Ty: TypeSuperFoldable<I>,
{
t.try_super_fold_with(self)
}
fn try_fold_region(&mut self, r: I::Region) -> Result<I::Region, Self::Error>
where
I::Region: TypeSuperFoldable<I>,
{
r.try_super_fold_with(self)
}
fn try_fold_const(&mut self, c: I::Const) -> Result<I::Const, Self::Error>
where
I::Const: TypeSuperFoldable<I>,
{
c.try_super_fold_with(self)
}
fn try_fold_predicate(&mut self, p: I::Predicate) -> Result<I::Predicate, Self::Error>
where
I::Predicate: TypeSuperFoldable<I>,
{
p.try_super_fold_with(self)
}
}
// This blanket implementation of the fallible trait for infallible folders
// delegates to infallible methods to ensure coherence.
impl<I: Interner, F> FallibleTypeFolder<I> for F
where
F: TypeFolder<I>,
{
type Error = !;
fn tcx<'a>(&'a self) -> I {
TypeFolder::tcx(self)
}
fn try_fold_binder<T>(&mut self, t: I::Binder<T>) -> Result<I::Binder<T>, !>
where
T: TypeFoldable<I>,
I::Binder<T>: TypeSuperFoldable<I>,
{
Ok(self.fold_binder(t))
}
fn try_fold_ty(&mut self, t: I::Ty) -> Result<I::Ty, !>
where
I::Ty: TypeSuperFoldable<I>,
{
Ok(self.fold_ty(t))
}
fn try_fold_region(&mut self, r: I::Region) -> Result<I::Region, !>
where
I::Region: TypeSuperFoldable<I>,
{
Ok(self.fold_region(r))
}
fn try_fold_const(&mut self, c: I::Const) -> Result<I::Const, !>
where
I::Const: TypeSuperFoldable<I>,
{
Ok(self.fold_const(c))
}
fn try_fold_predicate(&mut self, p: I::Predicate) -> Result<I::Predicate, !>
where
I::Predicate: TypeSuperFoldable<I>,
{
Ok(self.fold_predicate(p))
}
}

View File

@ -1,6 +1,10 @@
#![feature(associated_type_defaults)]
#![feature(fmt_helpers_for_derive)]
#![feature(get_mut_unchecked)]
#![feature(min_specialization)]
#![feature(never_type)]
#![feature(rustc_attrs)]
#![feature(unwrap_infallible)]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
@ -18,8 +22,14 @@
use std::mem::discriminant;
pub mod codec;
pub mod fold;
pub mod sty;
pub mod ty_info;
pub mod visit;
#[macro_use]
mod macros;
mod structural_impls;
pub use codec::*;
pub use sty::*;

View File

@ -0,0 +1,176 @@
/// Used for types that are `Copy` and which **do not care arena
/// allocated data** (i.e., don't need to be folded).
macro_rules! TrivialTypeTraversalImpls {
($($ty:ty,)+) => {
$(
impl<I: $crate::Interner> $crate::fold::TypeFoldable<I> for $ty {
fn try_fold_with<F: $crate::fold::FallibleTypeFolder<I>>(
self,
_: &mut F,
) -> ::std::result::Result<Self, F::Error> {
Ok(self)
}
#[inline]
fn fold_with<F: $crate::fold::TypeFolder<I>>(
self,
_: &mut F,
) -> Self {
self
}
}
impl<I: $crate::Interner> $crate::visit::TypeVisitable<I> for $ty {
#[inline]
fn visit_with<F: $crate::visit::TypeVisitor<I>>(
&self,
_: &mut F)
-> ::std::ops::ControlFlow<F::BreakTy>
{
::std::ops::ControlFlow::Continue(())
}
}
)+
};
}
macro_rules! EnumTypeTraversalImpl {
(impl<$($p:tt),*> TypeFoldable<$tcx:tt> for $s:path {
$($variants:tt)*
} $(where $($wc:tt)*)*) => {
impl<$($p),*> $crate::fold::TypeFoldable<$tcx> for $s
$(where $($wc)*)*
{
fn try_fold_with<V: $crate::fold::FallibleTypeFolder<$tcx>>(
self,
folder: &mut V,
) -> ::std::result::Result<Self, V::Error> {
EnumTypeTraversalImpl!(@FoldVariants(self, folder) input($($variants)*) output())
}
}
};
(impl<$($p:tt),*> TypeVisitable<$tcx:tt> for $s:path {
$($variants:tt)*
} $(where $($wc:tt)*)*) => {
impl<$($p),*> $crate::visit::TypeVisitable<$tcx> for $s
$(where $($wc)*)*
{
fn visit_with<V: $crate::visit::TypeVisitor<$tcx>>(
&self,
visitor: &mut V,
) -> ::std::ops::ControlFlow<V::BreakTy> {
EnumTypeTraversalImpl!(@VisitVariants(self, visitor) input($($variants)*) output())
}
}
};
(@FoldVariants($this:expr, $folder:expr) input() output($($output:tt)*)) => {
Ok(match $this {
$($output)*
})
};
(@FoldVariants($this:expr, $folder:expr)
input( ($variant:path) ( $($variant_arg:ident),* ) , $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@FoldVariants($this, $folder)
input($($input)*)
output(
$variant ( $($variant_arg),* ) => {
$variant (
$($crate::fold::TypeFoldable::try_fold_with($variant_arg, $folder)?),*
)
}
$($output)*
)
)
};
(@FoldVariants($this:expr, $folder:expr)
input( ($variant:path) { $($variant_arg:ident),* $(,)? } , $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@FoldVariants($this, $folder)
input($($input)*)
output(
$variant { $($variant_arg),* } => {
$variant {
$($variant_arg: $crate::fold::TypeFoldable::fold_with(
$variant_arg, $folder
)?),* }
}
$($output)*
)
)
};
(@FoldVariants($this:expr, $folder:expr)
input( ($variant:path), $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@FoldVariants($this, $folder)
input($($input)*)
output(
$variant => { $variant }
$($output)*
)
)
};
(@VisitVariants($this:expr, $visitor:expr) input() output($($output:tt)*)) => {
match $this {
$($output)*
}
};
(@VisitVariants($this:expr, $visitor:expr)
input( ($variant:path) ( $($variant_arg:ident),* ) , $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@VisitVariants($this, $visitor)
input($($input)*)
output(
$variant ( $($variant_arg),* ) => {
$($crate::visit::TypeVisitable::visit_with(
$variant_arg, $visitor
)?;)*
::std::ops::ControlFlow::Continue(())
}
$($output)*
)
)
};
(@VisitVariants($this:expr, $visitor:expr)
input( ($variant:path) { $($variant_arg:ident),* $(,)? } , $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@VisitVariants($this, $visitor)
input($($input)*)
output(
$variant { $($variant_arg),* } => {
$($crate::visit::TypeVisitable::visit_with(
$variant_arg, $visitor
)?;)*
::std::ops::ControlFlow::Continue(())
}
$($output)*
)
)
};
(@VisitVariants($this:expr, $visitor:expr)
input( ($variant:path), $($input:tt)*)
output( $($output:tt)*) ) => {
EnumTypeTraversalImpl!(
@VisitVariants($this, $visitor)
input($($input)*)
output(
$variant => { ::std::ops::ControlFlow::Continue(()) }
$($output)*
)
)
};
}

View File

@ -0,0 +1,238 @@
//! This module contains implementations of the `TypeFoldable` and `TypeVisitable`
//! traits for various types in the Rust compiler. Most are written by hand, though
//! we've recently added some macros and proc-macros to help with the tedium.
use crate::fold::{FallibleTypeFolder, TypeFoldable};
use crate::visit::{TypeVisitable, TypeVisitor};
use crate::Interner;
use rustc_data_structures::functor::IdFunctor;
use rustc_index::vec::{Idx, IndexVec};
use std::mem::ManuallyDrop;
use std::ops::ControlFlow;
use std::rc::Rc;
use std::sync::Arc;
///////////////////////////////////////////////////////////////////////////
// Atomic structs
//
// For things that don't carry any arena-allocated data (and are
// copy...), just add them to this list.
TrivialTypeTraversalImpls! {
(),
bool,
usize,
u16,
u32,
u64,
String,
crate::DebruijnIndex,
}
///////////////////////////////////////////////////////////////////////////
// Traversal implementations.
impl<I: Interner, T: TypeFoldable<I>, U: TypeFoldable<I>> TypeFoldable<I> for (T, U) {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<(T, U), F::Error> {
Ok((self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?))
}
}
impl<I: Interner, T: TypeVisitable<I>, U: TypeVisitable<I>> TypeVisitable<I> for (T, U) {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.0.visit_with(visitor)?;
self.1.visit_with(visitor)
}
}
impl<I: Interner, A: TypeFoldable<I>, B: TypeFoldable<I>, C: TypeFoldable<I>> TypeFoldable<I>
for (A, B, C)
{
fn try_fold_with<F: FallibleTypeFolder<I>>(
self,
folder: &mut F,
) -> Result<(A, B, C), F::Error> {
Ok((
self.0.try_fold_with(folder)?,
self.1.try_fold_with(folder)?,
self.2.try_fold_with(folder)?,
))
}
}
impl<I: Interner, A: TypeVisitable<I>, B: TypeVisitable<I>, C: TypeVisitable<I>> TypeVisitable<I>
for (A, B, C)
{
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.0.visit_with(visitor)?;
self.1.visit_with(visitor)?;
self.2.visit_with(visitor)
}
}
EnumTypeTraversalImpl! {
impl<I, T> TypeFoldable<I> for Option<T> {
(Some)(a),
(None),
} where I: Interner, T: TypeFoldable<I>
}
EnumTypeTraversalImpl! {
impl<I, T> TypeVisitable<I> for Option<T> {
(Some)(a),
(None),
} where I: Interner, T: TypeVisitable<I>
}
EnumTypeTraversalImpl! {
impl<I, T, E> TypeFoldable<I> for Result<T, E> {
(Ok)(a),
(Err)(a),
} where I: Interner, T: TypeFoldable<I>, E: TypeFoldable<I>,
}
EnumTypeTraversalImpl! {
impl<I, T, E> TypeVisitable<I> for Result<T, E> {
(Ok)(a),
(Err)(a),
} where I: Interner, T: TypeVisitable<I>, E: TypeVisitable<I>,
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Rc<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(mut self, folder: &mut F) -> Result<Self, F::Error> {
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `Rc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `Rc::make_mut` will accomplish (by
// allocating a new `Rc` and cloning the `T` only if required).
// This is done *before* casting to `Rc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
Rc::make_mut(&mut self);
// Casting to `Rc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = Rc::into_raw(self).cast::<ManuallyDrop<T>>();
let mut unique = Rc::from_raw(ptr);
// Call to `Rc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = Rc::get_mut_unchecked(&mut unique);
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = ManuallyDrop::take(slot);
let folded = owned.try_fold_with(folder)?;
*slot = ManuallyDrop::new(folded);
// Cast back to `Rc<T>`.
Ok(Rc::from_raw(Rc::into_raw(unique).cast()))
}
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Rc<T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Arc<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(mut self, folder: &mut F) -> Result<Self, F::Error> {
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `Arc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `Arc::make_mut` will accomplish (by
// allocating a new `Arc` and cloning the `T` only if required).
// This is done *before* casting to `Arc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
Arc::make_mut(&mut self);
// Casting to `Arc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = Arc::into_raw(self).cast::<ManuallyDrop<T>>();
let mut unique = Arc::from_raw(ptr);
// Call to `Arc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = Arc::get_mut_unchecked(&mut unique);
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = ManuallyDrop::take(slot);
let folded = owned.try_fold_with(folder)?;
*slot = ManuallyDrop::new(folded);
// Cast back to `Arc<T>`.
Ok(Arc::from_raw(Arc::into_raw(unique).cast()))
}
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Arc<T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Box<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|value| value.try_fold_with(folder))
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Box<T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
(**self).visit_with(visitor)
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Vec<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|t| t.try_fold_with(folder))
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Vec<T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for &[T] {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Box<[T]> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|t| t.try_fold_with(folder))
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Box<[T]> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}
impl<I: Interner, T: TypeFoldable<I>, Ix: Idx> TypeFoldable<I> for IndexVec<Ix, T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|x| x.try_fold_with(folder))
}
}
impl<I: Interner, T: TypeVisitable<I>, Ix: Idx> TypeVisitable<I> for IndexVec<Ix, T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> {
self.iter().try_for_each(|t| t.visit_with(visitor))
}
}

View File

@ -0,0 +1,115 @@
//! A visiting traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a read-only traversal of the data structure.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! visitation. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three groups of traits involved in each traversal.
//! - `TypeVisitable`. This is implemented once for many types, including:
//! - Types of interest, for which the methods delegate to the visitor.
//! - All other types, including generic containers like `Vec` and `Option`.
//! It defines a "skeleton" of how they should be visited.
//! - `TypeSuperVisitable`. This is implemented only for each type of interest,
//! and defines the visiting "skeleton" for these types.
//! - `TypeVisitor`. This is implemented for each visitor. This defines how
//! types of interest are visited.
//!
//! This means each visit is a mixture of (a) generic visiting operations, and (b)
//! custom visit operations that are specific to the visitor.
//! - The `TypeVisitable` impls handle most of the traversal, and call into
//! `TypeVisitor` when they encounter a type of interest.
//! - A `TypeVisitor` may call into another `TypeVisitable` impl, because some of
//! the types of interest are recursive and can contain other types of interest.
//! - A `TypeVisitor` may also call into a `TypeSuperVisitable` impl, because each
//! visitor might provide custom handling only for some types of interest, or
//! only for some variants of each type of interest, and then use default
//! traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeVisitable` and `U:
//! TypeVisitable`, and an instance `s = S(ty, u)`, it would be visited like so:
//! ```text
//! s.visit_with(visitor) calls
//! - ty.visit_with(visitor) calls
//! - visitor.visit_ty(ty) may call
//! - ty.super_visit_with(visitor)
//! - u.visit_with(visitor)
//! ```
use crate::Interner;
use std::fmt;
use std::ops::ControlFlow;
/// This trait is implemented for every type that can be visited,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
pub trait TypeVisitable<I: Interner>: fmt::Debug + Clone {
/// The entry point for visiting. To visit a value `t` with a visitor `v`
/// call: `t.visit_with(v)`.
///
/// For most types, this just traverses the value, calling `visit_with` on
/// each field/element.
///
/// For types of interest (such as `Ty`), the implementation of this method
/// that calls a visitor method specifically for that type (such as
/// `V::visit_ty`). This is where control transfers from `TypeFoldable` to
/// `TypeVisitor`.
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy>;
}
pub trait TypeSuperVisitable<I: Interner>: TypeVisitable<I> {
/// Provides a default visit for a type of interest. This should only be
/// called within `TypeVisitor` methods, when a non-custom traversal is
/// desired for the value of the type of interest passed to that method.
/// For example, in `MyVisitor::visit_ty(ty)`, it is valid to call
/// `ty.super_visit_with(self)`, but any other visiting should be done
/// with `xyz.visit_with(self)`.
fn super_visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy>;
}
/// This trait is implemented for every visiting traversal. There is a visit
/// method defined for every type of interest. Each such method has a default
/// that recurses into the type's fields in a non-custom fashion.
pub trait TypeVisitor<I: Interner>: Sized {
type BreakTy = !;
fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &I::Binder<T>) -> ControlFlow<Self::BreakTy>
where
I::Binder<T>: TypeSuperVisitable<I>,
{
t.super_visit_with(self)
}
fn visit_ty(&mut self, t: I::Ty) -> ControlFlow<Self::BreakTy>
where
I::Ty: TypeSuperVisitable<I>,
{
t.super_visit_with(self)
}
fn visit_region(&mut self, r: I::Region) -> ControlFlow<Self::BreakTy>
where
I::Region: TypeSuperVisitable<I>,
{
r.super_visit_with(self)
}
fn visit_const(&mut self, c: I::Const) -> ControlFlow<Self::BreakTy>
where
I::Const: TypeSuperVisitable<I>,
{
c.super_visit_with(self)
}
fn visit_predicate(&mut self, p: I::Predicate) -> ControlFlow<Self::BreakTy>
where
I::Predicate: TypeSuperVisitable<I>,
{
p.super_visit_with(self)
}
}