Move Arithmetic into Operators lint pass

This commit is contained in:
Jason Newcomb 2022-05-31 21:27:29 -04:00
parent dd78ce7bbe
commit 448b6f45bd
6 changed files with 213 additions and 183 deletions

View File

@ -431,12 +431,12 @@ store.register_lints(&[
non_octal_unix_permissions::NON_OCTAL_UNIX_PERMISSIONS,
non_send_fields_in_send_ty::NON_SEND_FIELDS_IN_SEND_TY,
nonstandard_macro_braces::NONSTANDARD_MACRO_BRACES,
numeric_arithmetic::FLOAT_ARITHMETIC,
numeric_arithmetic::INTEGER_ARITHMETIC,
octal_escapes::OCTAL_ESCAPES,
only_used_in_recursion::ONLY_USED_IN_RECURSION,
open_options::NONSENSICAL_OPEN_OPTIONS,
operators::ABSURD_EXTREME_COMPARISONS,
operators::FLOAT_ARITHMETIC,
operators::INTEGER_ARITHMETIC,
option_env_unwrap::OPTION_ENV_UNWRAP,
option_if_let_else::OPTION_IF_LET_ELSE,
overflow_check_conditional::OVERFLOW_CHECK_CONDITIONAL,

View File

@ -50,8 +50,8 @@ store.register_group(true, "clippy::restriction", Some("clippy_restriction"), ve
LintId::of(module_style::MOD_MODULE_FILES),
LintId::of(module_style::SELF_NAMED_MODULE_FILES),
LintId::of(modulo_arithmetic::MODULO_ARITHMETIC),
LintId::of(numeric_arithmetic::FLOAT_ARITHMETIC),
LintId::of(numeric_arithmetic::INTEGER_ARITHMETIC),
LintId::of(operators::FLOAT_ARITHMETIC),
LintId::of(operators::INTEGER_ARITHMETIC),
LintId::of(panic_in_result_fn::PANIC_IN_RESULT_FN),
LintId::of(panic_unimplemented::PANIC),
LintId::of(panic_unimplemented::TODO),

View File

@ -331,7 +331,6 @@ mod non_expressive_names;
mod non_octal_unix_permissions;
mod non_send_fields_in_send_ty;
mod nonstandard_macro_braces;
mod numeric_arithmetic;
mod octal_escapes;
mod only_used_in_recursion;
mod open_options;
@ -705,7 +704,6 @@ pub fn register_plugins(store: &mut rustc_lint::LintStore, sess: &Session, conf:
store.register_late_pass(move || Box::new(doc::DocMarkdown::new(doc_valid_idents.clone())));
store.register_late_pass(|| Box::new(neg_multiply::NegMultiply));
store.register_late_pass(|| Box::new(mem_forget::MemForget));
store.register_late_pass(|| Box::new(numeric_arithmetic::NumericArithmetic::default()));
store.register_late_pass(|| Box::new(assign_ops::AssignOps));
store.register_late_pass(|| Box::new(let_if_seq::LetIfSeq));
store.register_late_pass(|| Box::new(mixed_read_write_in_expression::EvalOrderDependence));
@ -940,7 +938,7 @@ pub fn register_plugins(store: &mut rustc_lint::LintStore, sess: &Session, conf:
store.register_late_pass(|| Box::new(default_instead_of_iter_empty::DefaultIterEmpty));
store.register_late_pass(move || Box::new(manual_rem_euclid::ManualRemEuclid::new(msrv)));
store.register_late_pass(move || Box::new(manual_retain::ManualRetain::new(msrv)));
store.register_late_pass(|| Box::new(operators::Operators));
store.register_late_pass(|| Box::new(operators::Operators::default()));
// add lints here, do not remove this comment, it's used in `new_lint`
}

View File

@ -1,170 +0,0 @@
use clippy_utils::consts::constant_simple;
use clippy_utils::diagnostics::span_lint;
use rustc_hir as hir;
use rustc_lint::{LateContext, LateLintPass};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::source_map::Span;
declare_clippy_lint! {
/// ### What it does
/// Checks for integer arithmetic operations which could overflow or panic.
///
/// Specifically, checks for any operators (`+`, `-`, `*`, `<<`, etc) which are capable
/// of overflowing according to the [Rust
/// Reference](https://doc.rust-lang.org/reference/expressions/operator-expr.html#overflow),
/// or which can panic (`/`, `%`). No bounds analysis or sophisticated reasoning is
/// attempted.
///
/// ### Why is this bad?
/// Integer overflow will trigger a panic in debug builds or will wrap in
/// release mode. Division by zero will cause a panic in either mode. In some applications one
/// wants explicitly checked, wrapping or saturating arithmetic.
///
/// ### Example
/// ```rust
/// # let a = 0;
/// a + 1;
/// ```
#[clippy::version = "pre 1.29.0"]
pub INTEGER_ARITHMETIC,
restriction,
"any integer arithmetic expression which could overflow or panic"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for float arithmetic.
///
/// ### Why is this bad?
/// For some embedded systems or kernel development, it
/// can be useful to rule out floating-point numbers.
///
/// ### Example
/// ```rust
/// # let a = 0.0;
/// a + 1.0;
/// ```
#[clippy::version = "pre 1.29.0"]
pub FLOAT_ARITHMETIC,
restriction,
"any floating-point arithmetic statement"
}
#[derive(Copy, Clone, Default)]
pub struct NumericArithmetic {
expr_span: Option<Span>,
/// This field is used to check whether expressions are constants, such as in enum discriminants
/// and consts
const_span: Option<Span>,
}
impl_lint_pass!(NumericArithmetic => [INTEGER_ARITHMETIC, FLOAT_ARITHMETIC]);
impl<'tcx> LateLintPass<'tcx> for NumericArithmetic {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) {
if self.expr_span.is_some() {
return;
}
if let Some(span) = self.const_span {
if span.contains(expr.span) {
return;
}
}
match &expr.kind {
hir::ExprKind::Binary(op, l, r) | hir::ExprKind::AssignOp(op, l, r) => {
match op.node {
hir::BinOpKind::And
| hir::BinOpKind::Or
| hir::BinOpKind::BitAnd
| hir::BinOpKind::BitOr
| hir::BinOpKind::BitXor
| hir::BinOpKind::Eq
| hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Ne
| hir::BinOpKind::Ge
| hir::BinOpKind::Gt => return,
_ => (),
}
let (l_ty, r_ty) = (cx.typeck_results().expr_ty(l), cx.typeck_results().expr_ty(r));
if l_ty.peel_refs().is_integral() && r_ty.peel_refs().is_integral() {
match op.node {
hir::BinOpKind::Div | hir::BinOpKind::Rem => match &r.kind {
hir::ExprKind::Lit(_lit) => (),
hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
if let hir::ExprKind::Lit(lit) = &expr.kind {
if let rustc_ast::ast::LitKind::Int(1, _) = lit.node {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_span = Some(expr.span);
}
}
},
_ => {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_span = Some(expr.span);
},
},
_ => {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_span = Some(expr.span);
},
}
} else if r_ty.peel_refs().is_floating_point() && r_ty.peel_refs().is_floating_point() {
span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
self.expr_span = Some(expr.span);
}
},
hir::ExprKind::Unary(hir::UnOp::Neg, arg) => {
let ty = cx.typeck_results().expr_ty(arg);
if constant_simple(cx, cx.typeck_results(), expr).is_none() {
if ty.is_integral() {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_span = Some(expr.span);
} else if ty.is_floating_point() {
span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
self.expr_span = Some(expr.span);
}
}
},
_ => (),
}
}
fn check_expr_post(&mut self, _: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) {
if Some(expr.span) == self.expr_span {
self.expr_span = None;
}
}
fn check_body(&mut self, cx: &LateContext<'_>, body: &hir::Body<'_>) {
let body_owner = cx.tcx.hir().body_owner_def_id(body.id());
match cx.tcx.hir().body_owner_kind(body_owner) {
hir::BodyOwnerKind::Static(_) | hir::BodyOwnerKind::Const => {
let body_span = cx.tcx.def_span(body_owner);
if let Some(span) = self.const_span {
if span.contains(body_span) {
return;
}
}
self.const_span = Some(body_span);
},
hir::BodyOwnerKind::Fn | hir::BodyOwnerKind::Closure => (),
}
}
fn check_body_post(&mut self, cx: &LateContext<'_>, body: &hir::Body<'_>) {
let body_owner = cx.tcx.hir().body_owner(body.id());
let body_span = cx.tcx.hir().span(body_owner);
if let Some(span) = self.const_span {
if span.contains(body_span) {
return;
}
}
self.const_span = None;
}
}

View File

@ -1,8 +1,9 @@
use rustc_hir::{Expr, ExprKind};
use rustc_hir::{Body, Expr, ExprKind, UnOp};
use rustc_lint::{LateContext, LateLintPass};
use rustc_session::{declare_tool_lint, impl_lint_pass};
mod absurd_extreme_comparisons;
mod numeric_arithmetic;
declare_clippy_lint! {
/// ### What it does
@ -36,16 +37,90 @@ declare_clippy_lint! {
"a comparison with a maximum or minimum value that is always true or false"
}
pub struct Operators;
declare_clippy_lint! {
/// ### What it does
/// Checks for integer arithmetic operations which could overflow or panic.
///
/// Specifically, checks for any operators (`+`, `-`, `*`, `<<`, etc) which are capable
/// of overflowing according to the [Rust
/// Reference](https://doc.rust-lang.org/reference/expressions/operator-expr.html#overflow),
/// or which can panic (`/`, `%`). No bounds analysis or sophisticated reasoning is
/// attempted.
///
/// ### Why is this bad?
/// Integer overflow will trigger a panic in debug builds or will wrap in
/// release mode. Division by zero will cause a panic in either mode. In some applications one
/// wants explicitly checked, wrapping or saturating arithmetic.
///
/// ### Example
/// ```rust
/// # let a = 0;
/// a + 1;
/// ```
#[clippy::version = "pre 1.29.0"]
pub INTEGER_ARITHMETIC,
restriction,
"any integer arithmetic expression which could overflow or panic"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for float arithmetic.
///
/// ### Why is this bad?
/// For some embedded systems or kernel development, it
/// can be useful to rule out floating-point numbers.
///
/// ### Example
/// ```rust
/// # let a = 0.0;
/// a + 1.0;
/// ```
#[clippy::version = "pre 1.29.0"]
pub FLOAT_ARITHMETIC,
restriction,
"any floating-point arithmetic statement"
}
#[derive(Default)]
pub struct Operators {
arithmetic_context: numeric_arithmetic::Context,
}
impl_lint_pass!(Operators => [
ABSURD_EXTREME_COMPARISONS,
INTEGER_ARITHMETIC,
FLOAT_ARITHMETIC,
]);
impl<'tcx> LateLintPass<'tcx> for Operators {
fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) {
if let ExprKind::Binary(op, lhs, rhs) = e.kind {
if !e.span.from_expansion() {
absurd_extreme_comparisons::check(cx, e, op.node, lhs, rhs);
}
match e.kind {
ExprKind::Binary(op, lhs, rhs) => {
if !e.span.from_expansion() {
absurd_extreme_comparisons::check(cx, e, op.node, lhs, rhs);
}
self.arithmetic_context.check_binary(cx, e, op.node, lhs, rhs);
},
ExprKind::AssignOp(op, lhs, rhs) => {
self.arithmetic_context.check_binary(cx, e, op.node, lhs, rhs);
},
ExprKind::Unary(op, arg) => {
if op == UnOp::Neg {
self.arithmetic_context.check_negate(cx, e, arg);
}
},
_ => (),
}
}
fn check_expr_post(&mut self, _: &LateContext<'_>, e: &Expr<'_>) {
self.arithmetic_context.expr_post(e.hir_id);
}
fn check_body(&mut self, cx: &LateContext<'tcx>, b: &'tcx Body<'_>) {
self.arithmetic_context.enter_body(cx, b);
}
fn check_body_post(&mut self, cx: &LateContext<'tcx>, b: &'tcx Body<'_>) {
self.arithmetic_context.body_post(cx, b);
}
}

View File

@ -0,0 +1,127 @@
use clippy_utils::consts::constant_simple;
use clippy_utils::diagnostics::span_lint;
use rustc_hir as hir;
use rustc_lint::LateContext;
use rustc_span::source_map::Span;
use super::{FLOAT_ARITHMETIC, INTEGER_ARITHMETIC};
#[derive(Default)]
pub struct Context {
expr_id: Option<hir::HirId>,
/// This field is used to check whether expressions are constants, such as in enum discriminants
/// and consts
const_span: Option<Span>,
}
impl Context {
fn skip_expr(&mut self, e: &hir::Expr<'_>) -> bool {
self.expr_id.is_some() || self.const_span.map_or(false, |span| span.contains(e.span))
}
pub fn check_binary<'tcx>(
&mut self,
cx: &LateContext<'tcx>,
expr: &'tcx hir::Expr<'_>,
op: hir::BinOpKind,
l: &'tcx hir::Expr<'_>,
r: &'tcx hir::Expr<'_>,
) {
if self.skip_expr(expr) {
return;
}
match op {
hir::BinOpKind::And
| hir::BinOpKind::Or
| hir::BinOpKind::BitAnd
| hir::BinOpKind::BitOr
| hir::BinOpKind::BitXor
| hir::BinOpKind::Eq
| hir::BinOpKind::Lt
| hir::BinOpKind::Le
| hir::BinOpKind::Ne
| hir::BinOpKind::Ge
| hir::BinOpKind::Gt => return,
_ => (),
}
let (l_ty, r_ty) = (cx.typeck_results().expr_ty(l), cx.typeck_results().expr_ty(r));
if l_ty.peel_refs().is_integral() && r_ty.peel_refs().is_integral() {
match op {
hir::BinOpKind::Div | hir::BinOpKind::Rem => match &r.kind {
hir::ExprKind::Lit(_lit) => (),
hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
if let hir::ExprKind::Lit(lit) = &expr.kind {
if let rustc_ast::ast::LitKind::Int(1, _) = lit.node {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_id = Some(expr.hir_id);
}
}
},
_ => {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_id = Some(expr.hir_id);
},
},
_ => {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_id = Some(expr.hir_id);
},
}
} else if r_ty.peel_refs().is_floating_point() && r_ty.peel_refs().is_floating_point() {
span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
self.expr_id = Some(expr.hir_id);
}
}
pub fn check_negate<'tcx>(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>, arg: &'tcx hir::Expr<'_>) {
if self.skip_expr(expr) {
return;
}
let ty = cx.typeck_results().expr_ty(arg);
if constant_simple(cx, cx.typeck_results(), expr).is_none() {
if ty.is_integral() {
span_lint(cx, INTEGER_ARITHMETIC, expr.span, "integer arithmetic detected");
self.expr_id = Some(expr.hir_id);
} else if ty.is_floating_point() {
span_lint(cx, FLOAT_ARITHMETIC, expr.span, "floating-point arithmetic detected");
self.expr_id = Some(expr.hir_id);
}
}
}
pub fn expr_post(&mut self, id: hir::HirId) {
if Some(id) == self.expr_id {
self.expr_id = None;
}
}
pub fn enter_body(&mut self, cx: &LateContext<'_>, body: &hir::Body<'_>) {
let body_owner = cx.tcx.hir().body_owner_def_id(body.id());
match cx.tcx.hir().body_owner_kind(body_owner) {
hir::BodyOwnerKind::Static(_) | hir::BodyOwnerKind::Const => {
let body_span = cx.tcx.def_span(body_owner);
if let Some(span) = self.const_span {
if span.contains(body_span) {
return;
}
}
self.const_span = Some(body_span);
},
hir::BodyOwnerKind::Fn | hir::BodyOwnerKind::Closure => (),
}
}
pub fn body_post(&mut self, cx: &LateContext<'_>, body: &hir::Body<'_>) {
let body_owner = cx.tcx.hir().body_owner(body.id());
let body_span = cx.tcx.hir().span(body_owner);
if let Some(span) = self.const_span {
if span.contains(body_span) {
return;
}
}
self.const_span = None;
}
}