Rollup merge of #124874 - jedbrown:float-mul-add-fast, r=saethlin

intrinsics fmuladdf{32,64}: expose llvm.fmuladd.* semantics

Add intrinsics `fmuladd{f32,f64}`. This computes `(a * b) + c`, to be fused if the code generator determines that (i) the target instruction set has support for a fused operation, and (ii) that the fused operation is more efficient than the equivalent, separate pair of `mul` and `add` instructions.

https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic

The codegen_cranelift uses the `fma` function from libc, which is a correct implementation, but without the desired performance semantic. I think this requires an update to cranelift to expose a suitable instruction in its IR.

I have not tested with codegen_gcc, but it should behave the same way (using `fma` from libc).

---
This topic has been discussed a few times on Zulip and was suggested, for example, by `@workingjubilee` in [Effect of fma disabled](https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/Effect.20of.20fma.20disabled/near/274179331).
This commit is contained in:
Trevor Gross 2024-10-11 23:57:44 -04:00 committed by GitHub
commit 3f9aa50b70
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 222 additions and 1 deletions

View File

@ -328,6 +328,9 @@ fn codegen_float_intrinsic_call<'tcx>(
sym::fabsf64 => ("fabs", 1, fx.tcx.types.f64, types::F64), sym::fabsf64 => ("fabs", 1, fx.tcx.types.f64, types::F64),
sym::fmaf32 => ("fmaf", 3, fx.tcx.types.f32, types::F32), sym::fmaf32 => ("fmaf", 3, fx.tcx.types.f32, types::F32),
sym::fmaf64 => ("fma", 3, fx.tcx.types.f64, types::F64), sym::fmaf64 => ("fma", 3, fx.tcx.types.f64, types::F64),
// FIXME: calling `fma` from libc without FMA target feature uses expensive sofware emulation
sym::fmuladdf32 => ("fmaf", 3, fx.tcx.types.f32, types::F32), // TODO: use cranelift intrinsic analogous to llvm.fmuladd.f32
sym::fmuladdf64 => ("fma", 3, fx.tcx.types.f64, types::F64), // TODO: use cranelift intrinsic analogous to llvm.fmuladd.f64
sym::copysignf32 => ("copysignf", 2, fx.tcx.types.f32, types::F32), sym::copysignf32 => ("copysignf", 2, fx.tcx.types.f32, types::F32),
sym::copysignf64 => ("copysign", 2, fx.tcx.types.f64, types::F64), sym::copysignf64 => ("copysign", 2, fx.tcx.types.f64, types::F64),
sym::floorf32 => ("floorf", 1, fx.tcx.types.f32, types::F32), sym::floorf32 => ("floorf", 1, fx.tcx.types.f32, types::F32),
@ -381,7 +384,7 @@ fn codegen_float_intrinsic_call<'tcx>(
let layout = fx.layout_of(ty); let layout = fx.layout_of(ty);
let res = match intrinsic { let res = match intrinsic {
sym::fmaf32 | sym::fmaf64 => { sym::fmaf32 | sym::fmaf64 | sym::fmuladdf32 | sym::fmuladdf64 => {
CValue::by_val(fx.bcx.ins().fma(args[0], args[1], args[2]), layout) CValue::by_val(fx.bcx.ins().fma(args[0], args[1], args[2]), layout)
} }
sym::copysignf32 | sym::copysignf64 => { sym::copysignf32 | sym::copysignf64 => {

View File

@ -66,6 +66,9 @@ fn get_simple_intrinsic<'gcc, 'tcx>(
sym::log2f64 => "log2", sym::log2f64 => "log2",
sym::fmaf32 => "fmaf", sym::fmaf32 => "fmaf",
sym::fmaf64 => "fma", sym::fmaf64 => "fma",
// FIXME: calling `fma` from libc without FMA target feature uses expensive sofware emulation
sym::fmuladdf32 => "fmaf", // TODO: use gcc intrinsic analogous to llvm.fmuladd.f32
sym::fmuladdf64 => "fma", // TODO: use gcc intrinsic analogous to llvm.fmuladd.f64
sym::fabsf32 => "fabsf", sym::fabsf32 => "fabsf",
sym::fabsf64 => "fabs", sym::fabsf64 => "fabs",
sym::minnumf32 => "fminf", sym::minnumf32 => "fminf",

View File

@ -884,6 +884,11 @@ macro_rules! mk_struct {
ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64); ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64);
ifn!("llvm.fma.f128", fn(t_f128, t_f128, t_f128) -> t_f128); ifn!("llvm.fma.f128", fn(t_f128, t_f128, t_f128) -> t_f128);
ifn!("llvm.fmuladd.f16", fn(t_f16, t_f16, t_f16) -> t_f16);
ifn!("llvm.fmuladd.f32", fn(t_f32, t_f32, t_f32) -> t_f32);
ifn!("llvm.fmuladd.f64", fn(t_f64, t_f64, t_f64) -> t_f64);
ifn!("llvm.fmuladd.f128", fn(t_f128, t_f128, t_f128) -> t_f128);
ifn!("llvm.fabs.f16", fn(t_f16) -> t_f16); ifn!("llvm.fabs.f16", fn(t_f16) -> t_f16);
ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32); ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32);
ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64); ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64);

View File

@ -86,6 +86,11 @@ fn get_simple_intrinsic<'ll>(
sym::fmaf64 => "llvm.fma.f64", sym::fmaf64 => "llvm.fma.f64",
sym::fmaf128 => "llvm.fma.f128", sym::fmaf128 => "llvm.fma.f128",
sym::fmuladdf16 => "llvm.fmuladd.f16",
sym::fmuladdf32 => "llvm.fmuladd.f32",
sym::fmuladdf64 => "llvm.fmuladd.f64",
sym::fmuladdf128 => "llvm.fmuladd.f128",
sym::fabsf16 => "llvm.fabs.f16", sym::fabsf16 => "llvm.fabs.f16",
sym::fabsf32 => "llvm.fabs.f32", sym::fabsf32 => "llvm.fabs.f32",
sym::fabsf64 => "llvm.fabs.f64", sym::fabsf64 => "llvm.fabs.f64",

View File

@ -357,6 +357,19 @@ pub fn check_intrinsic_type(
(0, 0, vec![tcx.types.f128, tcx.types.f128, tcx.types.f128], tcx.types.f128) (0, 0, vec![tcx.types.f128, tcx.types.f128, tcx.types.f128], tcx.types.f128)
} }
sym::fmuladdf16 => {
(0, 0, vec![tcx.types.f16, tcx.types.f16, tcx.types.f16], tcx.types.f16)
}
sym::fmuladdf32 => {
(0, 0, vec![tcx.types.f32, tcx.types.f32, tcx.types.f32], tcx.types.f32)
}
sym::fmuladdf64 => {
(0, 0, vec![tcx.types.f64, tcx.types.f64, tcx.types.f64], tcx.types.f64)
}
sym::fmuladdf128 => {
(0, 0, vec![tcx.types.f128, tcx.types.f128, tcx.types.f128], tcx.types.f128)
}
sym::fabsf16 => (0, 0, vec![tcx.types.f16], tcx.types.f16), sym::fabsf16 => (0, 0, vec![tcx.types.f16], tcx.types.f16),
sym::fabsf32 => (0, 0, vec![tcx.types.f32], tcx.types.f32), sym::fabsf32 => (0, 0, vec![tcx.types.f32], tcx.types.f32),
sym::fabsf64 => (0, 0, vec![tcx.types.f64], tcx.types.f64), sym::fabsf64 => (0, 0, vec![tcx.types.f64], tcx.types.f64),

View File

@ -914,6 +914,10 @@
fmt_debug, fmt_debug,
fmul_algebraic, fmul_algebraic,
fmul_fast, fmul_fast,
fmuladdf128,
fmuladdf16,
fmuladdf32,
fmuladdf64,
fn_align, fn_align,
fn_delegation, fn_delegation,
fn_must_use, fn_must_use,

View File

@ -1795,6 +1795,59 @@ pub fn select_unpredictable<T>(b: bool, true_val: T, false_val: T) -> T {
#[rustc_nounwind] #[rustc_nounwind]
pub fn fmaf128(a: f128, b: f128, c: f128) -> f128; pub fn fmaf128(a: f128, b: f128, c: f128) -> f128;
/// Returns `a * b + c` for `f16` values, non-deterministically executing
/// either a fused multiply-add or two operations with rounding of the
/// intermediate result.
///
/// The operation is fused if the code generator determines that target
/// instruction set has support for a fused operation, and that the fused
/// operation is more efficient than the equivalent, separate pair of mul
/// and add instructions. It is unspecified whether or not a fused operation
/// is selected, and that may depend on optimization level and context, for
/// example.
#[rustc_nounwind]
#[cfg(not(bootstrap))]
pub fn fmuladdf16(a: f16, b: f16, c: f16) -> f16;
/// Returns `a * b + c` for `f32` values, non-deterministically executing
/// either a fused multiply-add or two operations with rounding of the
/// intermediate result.
///
/// The operation is fused if the code generator determines that target
/// instruction set has support for a fused operation, and that the fused
/// operation is more efficient than the equivalent, separate pair of mul
/// and add instructions. It is unspecified whether or not a fused operation
/// is selected, and that may depend on optimization level and context, for
/// example.
#[rustc_nounwind]
#[cfg(not(bootstrap))]
pub fn fmuladdf32(a: f32, b: f32, c: f32) -> f32;
/// Returns `a * b + c` for `f64` values, non-deterministically executing
/// either a fused multiply-add or two operations with rounding of the
/// intermediate result.
///
/// The operation is fused if the code generator determines that target
/// instruction set has support for a fused operation, and that the fused
/// operation is more efficient than the equivalent, separate pair of mul
/// and add instructions. It is unspecified whether or not a fused operation
/// is selected, and that may depend on optimization level and context, for
/// example.
#[rustc_nounwind]
#[cfg(not(bootstrap))]
pub fn fmuladdf64(a: f64, b: f64, c: f64) -> f64;
/// Returns `a * b + c` for `f128` values, non-deterministically executing
/// either a fused multiply-add or two operations with rounding of the
/// intermediate result.
///
/// The operation is fused if the code generator determines that target
/// instruction set has support for a fused operation, and that the fused
/// operation is more efficient than the equivalent, separate pair of mul
/// and add instructions. It is unspecified whether or not a fused operation
/// is selected, and that may depend on optimization level and context, for
/// example.
#[rustc_nounwind]
#[cfg(not(bootstrap))]
pub fn fmuladdf128(a: f128, b: f128, c: f128) -> f128;
/// Returns the absolute value of an `f16`. /// Returns the absolute value of an `f16`.
/// ///
/// The stabilized version of this intrinsic is /// The stabilized version of this intrinsic is

View File

@ -295,6 +295,37 @@ fn emulate_intrinsic_by_name(
this.write_scalar(res, dest)?; this.write_scalar(res, dest)?;
} }
"fmuladdf32" => {
let [a, b, c] = check_arg_count(args)?;
let a = this.read_scalar(a)?.to_f32()?;
let b = this.read_scalar(b)?.to_f32()?;
let c = this.read_scalar(c)?.to_f32()?;
let fuse: bool = this.machine.rng.get_mut().gen();
let res = if fuse {
// FIXME: Using host floats, to work around https://github.com/rust-lang/rustc_apfloat/issues/11
a.to_host().mul_add(b.to_host(), c.to_host()).to_soft()
} else {
((a * b).value + c).value
};
let res = this.adjust_nan(res, &[a, b, c]);
this.write_scalar(res, dest)?;
}
"fmuladdf64" => {
let [a, b, c] = check_arg_count(args)?;
let a = this.read_scalar(a)?.to_f64()?;
let b = this.read_scalar(b)?.to_f64()?;
let c = this.read_scalar(c)?.to_f64()?;
let fuse: bool = this.machine.rng.get_mut().gen();
let res = if fuse {
// FIXME: Using host floats, to work around https://github.com/rust-lang/rustc_apfloat/issues/11
a.to_host().mul_add(b.to_host(), c.to_host()).to_soft()
} else {
((a * b).value + c).value
};
let res = this.adjust_nan(res, &[a, b, c]);
this.write_scalar(res, dest)?;
}
"powf32" => { "powf32" => {
let [f1, f2] = check_arg_count(args)?; let [f1, f2] = check_arg_count(args)?;
let f1 = this.read_scalar(f1)?.to_f32()?; let f1 = this.read_scalar(f1)?.to_f32()?;

View File

@ -30,6 +30,7 @@ fn main() {
libm(); libm();
test_fast(); test_fast();
test_algebraic(); test_algebraic();
test_fmuladd();
} }
trait Float: Copy + PartialEq + Debug { trait Float: Copy + PartialEq + Debug {
@ -1041,3 +1042,20 @@ pub fn test_operations_f32(a: f32, b: f32) {
test_operations_f32(11., 2.); test_operations_f32(11., 2.);
test_operations_f32(10., 15.); test_operations_f32(10., 15.);
} }
fn test_fmuladd() {
use std::intrinsics::{fmuladdf32, fmuladdf64};
#[inline(never)]
pub fn test_operations_f32(a: f32, b: f32, c: f32) {
assert_approx_eq!(unsafe { fmuladdf32(a, b, c) }, a * b + c);
}
#[inline(never)]
pub fn test_operations_f64(a: f64, b: f64, c: f64) {
assert_approx_eq!(unsafe { fmuladdf64(a, b, c) }, a * b + c);
}
test_operations_f32(0.1, 0.2, 0.3);
test_operations_f64(1.1, 1.2, 1.3);
}

View File

@ -0,0 +1,44 @@
#![feature(core_intrinsics)]
use std::intrinsics::{fmuladdf32, fmuladdf64};
fn main() {
let mut saw_zero = false;
let mut saw_nonzero = false;
for _ in 0..50 {
let a = std::hint::black_box(0.1_f64);
let b = std::hint::black_box(0.2);
let c = std::hint::black_box(-a * b);
// It is unspecified whether the following operation is fused or not. The
// following evaluates to 0.0 if unfused, and nonzero (-1.66e-18) if fused.
let x = unsafe { fmuladdf64(a, b, c) };
if x == 0.0 {
saw_zero = true;
} else {
saw_nonzero = true;
}
}
assert!(
saw_zero && saw_nonzero,
"`fmuladdf64` failed to be evaluated as both fused and unfused"
);
let mut saw_zero = false;
let mut saw_nonzero = false;
for _ in 0..50 {
let a = std::hint::black_box(0.1_f32);
let b = std::hint::black_box(0.2);
let c = std::hint::black_box(-a * b);
// It is unspecified whether the following operation is fused or not. The
// following evaluates to 0.0 if unfused, and nonzero (-8.1956386e-10) if fused.
let x = unsafe { fmuladdf32(a, b, c) };
if x == 0.0 {
saw_zero = true;
} else {
saw_nonzero = true;
}
}
assert!(
saw_zero && saw_nonzero,
"`fmuladdf32` failed to be evaluated as both fused and unfused"
);
}

View File

@ -0,0 +1,42 @@
//@ run-pass
#![feature(core_intrinsics)]
use std::intrinsics::*;
macro_rules! assert_approx_eq {
($a:expr, $b:expr) => {{
let (a, b) = (&$a, &$b);
assert!((*a - *b).abs() < 1.0e-6, "{} is not approximately equal to {}", *a, *b);
}};
}
fn main() {
unsafe {
let nan: f32 = f32::NAN;
let inf: f32 = f32::INFINITY;
let neg_inf: f32 = f32::NEG_INFINITY;
assert_approx_eq!(fmuladdf32(1.23, 4.5, 0.67), 6.205);
assert_approx_eq!(fmuladdf32(-1.23, -4.5, -0.67), 4.865);
assert_approx_eq!(fmuladdf32(0.0, 8.9, 1.2), 1.2);
assert_approx_eq!(fmuladdf32(3.4, -0.0, 5.6), 5.6);
assert!(fmuladdf32(nan, 7.8, 9.0).is_nan());
assert_eq!(fmuladdf32(inf, 7.8, 9.0), inf);
assert_eq!(fmuladdf32(neg_inf, 7.8, 9.0), neg_inf);
assert_eq!(fmuladdf32(8.9, inf, 3.2), inf);
assert_eq!(fmuladdf32(-3.2, 2.4, neg_inf), neg_inf);
}
unsafe {
let nan: f64 = f64::NAN;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
assert_approx_eq!(fmuladdf64(1.23, 4.5, 0.67), 6.205);
assert_approx_eq!(fmuladdf64(-1.23, -4.5, -0.67), 4.865);
assert_approx_eq!(fmuladdf64(0.0, 8.9, 1.2), 1.2);
assert_approx_eq!(fmuladdf64(3.4, -0.0, 5.6), 5.6);
assert!(fmuladdf64(nan, 7.8, 9.0).is_nan());
assert_eq!(fmuladdf64(inf, 7.8, 9.0), inf);
assert_eq!(fmuladdf64(neg_inf, 7.8, 9.0), neg_inf);
assert_eq!(fmuladdf64(8.9, inf, 3.2), inf);
assert_eq!(fmuladdf64(-3.2, 2.4, neg_inf), neg_inf);
}
}