make InitMask lazy for fully init/uninit cases

Avoid materializing bits in the InitMask bitset when a single value
would be enough: when the mask represents a fully initialized or fully
uninitialized const allocation.
This commit is contained in:
Rémy Rakic 2023-03-27 15:52:17 +00:00
parent 7a0600714a
commit 3f80529c64

View File

@ -10,20 +10,185 @@ type Block = u64;
/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is initialized. If it is `false` the byte is uninitialized.
// Note: for performance reasons when interning, some of the `InitMask` fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable)]
#[derive(HashStable)]
/// The actual bits are only materialized when needed, and we try to keep this data lazy as long as
/// possible. Currently, if all the blocks have the same value, then the mask represents either a
/// fully initialized or fully uninitialized const allocation, so we can only store that single
/// value.
#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
pub struct InitMask {
blocks: Vec<Block>,
pub(crate) blocks: InitMaskBlocks,
len: Size,
}
#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
pub(crate) enum InitMaskBlocks {
Lazy {
/// Whether the lazy init mask is fully initialized or uninitialized.
state: bool,
},
Materialized(InitMaskMaterialized),
}
impl InitMask {
pub fn new(size: Size, state: bool) -> Self {
// Blocks start lazily allocated, until we have to materialize them.
let blocks = InitMaskBlocks::Lazy { state };
InitMask { len: size, blocks }
}
/// Checks whether the `range` is entirely initialized.
///
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
/// indexes for the first contiguous span of the uninitialized access.
#[inline]
pub fn is_range_initialized(&self, range: AllocRange) -> Result<(), AllocRange> {
let end = range.end();
if end > self.len {
return Err(AllocRange::from(self.len..end));
}
match self.blocks {
InitMaskBlocks::Lazy { state } => {
// Lazily allocated blocks represent the full mask, and cover the requested range by
// definition.
if state { Ok(()) } else { Err(range) }
}
InitMaskBlocks::Materialized(ref blocks) => {
blocks.is_range_initialized(range.start, end)
}
}
}
/// Sets a specified range to a value. If the range is out-of-bounds, the mask will grow to
/// accomodate it entirely.
pub fn set_range(&mut self, range: AllocRange, new_state: bool) {
let start = range.start;
let end = range.end();
let is_full_overwrite = start == Size::ZERO && end >= self.len;
// Optimize the cases of a full init/uninit state, while handling growth if needed.
match self.blocks {
InitMaskBlocks::Lazy { ref mut state } if is_full_overwrite => {
// This is fully overwriting the mask, and we'll still have a single initialization
// state: the blocks can stay lazy.
*state = new_state;
self.len = end;
}
InitMaskBlocks::Materialized(_) if is_full_overwrite => {
// This is also fully overwriting materialized blocks with a single initialization
// state: we'll have no need for these blocks anymore and can make them lazy.
self.blocks = InitMaskBlocks::Lazy { state: new_state };
self.len = end;
}
InitMaskBlocks::Lazy { state } if state == new_state => {
// Here we're partially overwriting the mask but the initialization state doesn't
// change: the blocks can stay lazy.
if end > self.len {
self.len = end;
}
}
_ => {
// Otherwise, we have a partial overwrite that can result in a mix of initialization
// states, so we'll need materialized blocks.
let len = self.len;
let blocks = self.materialize_blocks();
// There are 3 cases of interest here, if we have:
//
// [--------]
// ^ ^
// 0 len
//
// 1) the range to set can be in-bounds:
//
// xxxx = [start, end]
// [--------]
// ^ ^
// 0 len
//
// Here, we'll simply set the single `start` to `end` range.
//
// 2) the range to set can be partially out-of-bounds:
//
// xxxx = [start, end]
// [--------]
// ^ ^
// 0 len
//
// We have 2 subranges to handle:
// - we'll set the existing `start` to `len` range.
// - we'll grow and set the `len` to `end` range.
//
// 3) the range to set can be fully out-of-bounds:
//
// ---xxxx = [start, end]
// [--------]
// ^ ^
// 0 len
//
// Since we're growing the mask to a single `new_state` value, we consider the gap
// from `len` to `start` to be part of the range, and have a single subrange to
// handle: we'll grow and set the `len` to `end` range.
//
// Note that we have to materialize, set blocks, and grow the mask. We could
// therefore slightly optimize things in situations where these writes overlap.
// However, as of writing this, growing the mask doesn't happen in practice yet, so
// we don't do this micro-optimization.
if end <= len {
// Handle case 1.
blocks.set_range_inbounds(start, end, new_state);
} else {
if start < len {
// Handle the first subrange of case 2.
blocks.set_range_inbounds(start, len, new_state);
}
// Handle the second subrange of case 2, and case 3.
blocks.grow(len, end - len, new_state); // `Size` operation
self.len = end;
}
}
}
}
/// Materializes this mask's blocks when the mask is lazy.
#[inline]
fn materialize_blocks(&mut self) -> &mut InitMaskMaterialized {
if let InitMaskBlocks::Lazy { state } = self.blocks {
self.blocks = InitMaskBlocks::Materialized(InitMaskMaterialized::new(self.len, state));
}
let InitMaskBlocks::Materialized(ref mut blocks) = self.blocks else {
bug!("initmask blocks must be materialized here")
};
blocks
}
/// Returns the initialization state at the specified in-bounds index.
#[inline]
pub fn get(&self, idx: Size) -> bool {
match self.blocks {
InitMaskBlocks::Lazy { state } => state,
InitMaskBlocks::Materialized(ref blocks) => blocks.get(idx),
}
}
}
/// The actual materialized blocks of the bitmask, when we can't keep the `InitMask` lazy.
// Note: for performance reasons when interning, some of the fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, HashStable)]
pub(crate) struct InitMaskMaterialized {
pub(crate) blocks: Vec<Block>,
}
// Const allocations are only hashed for interning. However, they can be large, making the hashing
// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
// big buffers like the allocation's init mask. We can partially hash some fields when they're
// large.
impl hash::Hash for InitMask {
impl hash::Hash for InitMaskMaterialized {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
const MAX_BLOCKS_TO_HASH: usize = super::MAX_BYTES_TO_HASH / std::mem::size_of::<Block>();
const MAX_BLOCKS_LEN: usize = super::MAX_HASHED_BUFFER_LEN / std::mem::size_of::<Block>();
@ -41,18 +206,15 @@ impl hash::Hash for InitMask {
} else {
self.blocks.hash(state);
}
// Hash the other fields as usual.
self.len.hash(state);
}
}
impl InitMask {
impl InitMaskMaterialized {
pub const BLOCK_SIZE: u64 = 64;
pub fn new(size: Size, state: bool) -> Self {
let mut m = InitMask { blocks: vec![], len: Size::ZERO };
m.grow(size, state);
fn new(size: Size, state: bool) -> Self {
let mut m = InitMaskMaterialized { blocks: vec![] };
m.grow(Size::ZERO, size, state);
m
}
@ -62,8 +224,8 @@ impl InitMask {
// Each bit in a `Block` represents the initialization state of one byte of an allocation,
// so we use `.bytes()` here.
let bits = bits.bytes();
let a = bits / InitMask::BLOCK_SIZE;
let b = bits % InitMask::BLOCK_SIZE;
let a = bits / Self::BLOCK_SIZE;
let b = bits % Self::BLOCK_SIZE;
(usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
}
@ -71,7 +233,7 @@ impl InitMask {
fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
let block = block.try_into().ok().unwrap();
let bit = bit.try_into().ok().unwrap();
Size::from_bytes(block * InitMask::BLOCK_SIZE + bit)
Size::from_bytes(block * Self::BLOCK_SIZE + bit)
}
/// Checks whether the `range` is entirely initialized.
@ -79,13 +241,8 @@ impl InitMask {
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
/// indexes for the first contiguous span of the uninitialized access.
#[inline]
pub fn is_range_initialized(&self, range: AllocRange) -> Result<(), AllocRange> {
let end = range.end();
if end > self.len {
return Err(AllocRange::from(self.len..end));
}
let uninit_start = self.find_bit(range.start, end, false);
fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), AllocRange> {
let uninit_start = self.find_bit(start, end, false);
match uninit_start {
Some(uninit_start) => {
@ -96,15 +253,6 @@ impl InitMask {
}
}
pub fn set_range(&mut self, range: AllocRange, new_state: bool) {
let end = range.end();
let len = self.len;
if end > len {
self.grow(end - len, new_state);
}
self.set_range_inbounds(range.start, end, new_state);
}
fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
let (blocka, bita) = Self::bit_index(start);
let (blockb, bitb) = Self::bit_index(end);
@ -150,27 +298,35 @@ impl InitMask {
}
#[inline]
pub fn get(&self, i: Size) -> bool {
fn get(&self, i: Size) -> bool {
let (block, bit) = Self::bit_index(i);
(self.blocks[block] & (1 << bit)) != 0
}
fn grow(&mut self, amount: Size, new_state: bool) {
fn grow(&mut self, len: Size, amount: Size, new_state: bool) {
if amount.bytes() == 0 {
return;
}
let unused_trailing_bits =
u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - len.bytes();
// If there's not enough capacity in the currently allocated blocks, allocate some more.
if amount.bytes() > unused_trailing_bits {
let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
self.blocks.extend(
// FIXME(oli-obk): optimize this by repeating `new_state as Block`.
iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
);
// We allocate the blocks to the correct value for the requested init state, so we won't
// have to manually set them with another write.
let block = if new_state { u64::MAX } else { 0 };
self.blocks
.extend(iter::repeat(block).take(usize::try_from(additional_blocks).unwrap()));
}
// New blocks have already been set here, so we only need to set the unused trailing bits,
// if any.
if unused_trailing_bits > 0 {
let in_bounds_tail = Size::from_bytes(unused_trailing_bits);
self.set_range_inbounds(len, len + in_bounds_tail, new_state); // `Size` operation
}
let start = self.len;
self.len += amount;
self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
}
/// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
@ -188,7 +344,7 @@ impl InitMask {
/// ```
/// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
fn find_bit_fast(
init_mask: &InitMask,
init_mask: &InitMaskMaterialized,
start: Size,
end: Size,
is_init: bool,
@ -223,7 +379,7 @@ impl InitMask {
None
} else {
let bit = bits.trailing_zeros();
Some(InitMask::size_from_bit_index(block, bit))
Some(InitMaskMaterialized::size_from_bit_index(block, bit))
}
}
@ -253,9 +409,9 @@ impl InitMask {
// This provides the desired behavior of searching blocks 0 and 1 for (a),
// and searching only block 0 for (b).
// There is no concern of overflows since we checked for `start >= end` above.
let (start_block, start_bit) = InitMask::bit_index(start);
let (start_block, start_bit) = InitMaskMaterialized::bit_index(start);
let end_inclusive = Size::from_bytes(end.bytes() - 1);
let (end_block_inclusive, _) = InitMask::bit_index(end_inclusive);
let (end_block_inclusive, _) = InitMaskMaterialized::bit_index(end_inclusive);
// Handle first block: need to skip `start_bit` bits.
//
@ -340,7 +496,7 @@ impl InitMask {
#[cfg_attr(not(debug_assertions), allow(dead_code))]
fn find_bit_slow(
init_mask: &InitMask,
init_mask: &InitMaskMaterialized,
start: Size,
end: Size,
is_init: bool,
@ -436,10 +592,19 @@ impl<'a> Iterator for InitChunkIter<'a> {
return None;
}
let end_of_chunk =
self.init_mask.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
let end_of_chunk = match self.init_mask.blocks {
InitMaskBlocks::Lazy { .. } => {
// If we're iterating over the chunks of lazy blocks, we just emit a single
// full-size chunk.
self.end
}
InitMaskBlocks::Materialized(ref blocks) => {
let end_of_chunk =
blocks.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
end_of_chunk
}
};
let range = self.start..end_of_chunk;
let ret =
Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
@ -504,17 +669,19 @@ impl InitMask {
/// Applies multiple instances of the run-length encoding to the initialization mask.
pub fn apply_copy(&mut self, defined: InitCopy, range: AllocRange, repeat: u64) {
// An optimization where we can just overwrite an entire range of initialization
// bits if they are going to be uniformly `1` or `0`.
// An optimization where we can just overwrite an entire range of initialization bits if
// they are going to be uniformly `1` or `0`. If this happens to be a full-range overwrite,
// we won't need materialized blocks either.
if defined.ranges.len() <= 1 {
self.set_range_inbounds(
range.start,
range.start + range.size * repeat, // `Size` operations
defined.initial,
);
let start = range.start;
let end = range.start + range.size * repeat; // `Size` operations
self.set_range(AllocRange::from(start..end), defined.initial);
return;
}
// We're about to do one or more partial writes, so we ensure the blocks are materialized.
let blocks = self.materialize_blocks();
for mut j in 0..repeat {
j *= range.size.bytes();
j += range.start.bytes();
@ -522,7 +689,7 @@ impl InitMask {
for range in &defined.ranges {
let old_j = j;
j += range;
self.set_range_inbounds(Size::from_bytes(old_j), Size::from_bytes(j), cur);
blocks.set_range_inbounds(Size::from_bytes(old_j), Size::from_bytes(j), cur);
cur = !cur;
}
}