Rollup merge of #68787 - amosonn:patch-1, r=nagisa
Optimize core::ptr::align_offset (part 1) r? @nagisa See #68616 for main discussion.
This commit is contained in:
commit
370fd8c1b7
@ -1081,9 +1081,8 @@ fn mod_inv(x: usize, m: usize) -> usize {
|
||||
// uses e.g., subtraction `mod n`. It is entirely fine to do them `mod
|
||||
// usize::max_value()` instead, because we take the result `mod n` at the end
|
||||
// anyway.
|
||||
inverse = inverse.wrapping_mul(2usize.wrapping_sub(x.wrapping_mul(inverse)))
|
||||
& (going_mod - 1);
|
||||
if going_mod > m {
|
||||
inverse = inverse.wrapping_mul(2usize.wrapping_sub(x.wrapping_mul(inverse)));
|
||||
if going_mod >= m {
|
||||
return inverse & (m - 1);
|
||||
}
|
||||
going_mod = going_mod.wrapping_mul(going_mod);
|
||||
@ -1115,26 +1114,33 @@ fn mod_inv(x: usize, m: usize) -> usize {
|
||||
let gcdpow = intrinsics::cttz_nonzero(stride).min(intrinsics::cttz_nonzero(a));
|
||||
let gcd = 1usize << gcdpow;
|
||||
|
||||
if p as usize & (gcd - 1) == 0 {
|
||||
if p as usize & (gcd.wrapping_sub(1)) == 0 {
|
||||
// This branch solves for the following linear congruence equation:
|
||||
//
|
||||
// $$ p + so ≡ 0 mod a $$
|
||||
// ` p + so = 0 mod a `
|
||||
//
|
||||
// $p$ here is the pointer value, $s$ – stride of `T`, $o$ offset in `T`s, and $a$ – the
|
||||
// `p` here is the pointer value, `s` - stride of `T`, `o` offset in `T`s, and `a` - the
|
||||
// requested alignment.
|
||||
//
|
||||
// g = gcd(a, s)
|
||||
// o = (a - (p mod a))/g * ((s/g)⁻¹ mod a)
|
||||
// With `g = gcd(a, s)`, and the above asserting that `p` is also divisible by `g`, we can
|
||||
// denote `a' = a/g`, `s' = s/g`, `p' = p/g`, then this becomes equivalent to:
|
||||
//
|
||||
// The first term is “the relative alignment of p to a”, the second term is “how does
|
||||
// incrementing p by s bytes change the relative alignment of p”. Division by `g` is
|
||||
// necessary to make this equation well formed if $a$ and $s$ are not co-prime.
|
||||
// ` p' + s'o = 0 mod a' `
|
||||
// ` o = (a' - (p' mod a')) * (s'^-1 mod a') `
|
||||
//
|
||||
// Furthermore, the result produced by this solution is not “minimal”, so it is necessary
|
||||
// to take the result $o mod lcm(s, a)$. We can replace $lcm(s, a)$ with just a $a / g$.
|
||||
let j = a.wrapping_sub(pmoda) >> gcdpow;
|
||||
let k = smoda >> gcdpow;
|
||||
return intrinsics::unchecked_rem(j.wrapping_mul(mod_inv(k, a)), a >> gcdpow);
|
||||
// The first term is "the relative alignment of `p` to `a`" (divided by the `g`), the second
|
||||
// term is "how does incrementing `p` by `s` bytes change the relative alignment of `p`" (again
|
||||
// divided by `g`).
|
||||
// Division by `g` is necessary to make the inverse well formed if `a` and `s` are not
|
||||
// co-prime.
|
||||
//
|
||||
// Furthermore, the result produced by this solution is not "minimal", so it is necessary
|
||||
// to take the result `o mod lcm(s, a)`. We can replace `lcm(s, a)` with just a `a'`.
|
||||
let a2 = a >> gcdpow;
|
||||
let a2minus1 = a2.wrapping_sub(1);
|
||||
let s2 = smoda >> gcdpow;
|
||||
let minusp2 = a2.wrapping_sub(pmoda >> gcdpow);
|
||||
return (minusp2.wrapping_mul(mod_inv(s2, a2))) & a2minus1;
|
||||
}
|
||||
|
||||
// Cannot be aligned at all.
|
||||
|
Loading…
Reference in New Issue
Block a user