Inline constructor_sub_pattern_tys

It was only used at a single location
This commit is contained in:
Nadrieril 2019-11-07 12:04:19 +00:00
parent 098974dadd
commit 369a351010

View File

@ -779,8 +779,67 @@ fn wildcard_subpatterns<'a>(
&self,
cx: &MatchCheckCtxt<'a, 'tcx>,
ty: Ty<'tcx>,
) -> impl Iterator<Item = Pat<'tcx>> + DoubleEndedIterator {
constructor_sub_pattern_tys(cx, self, ty).into_iter().map(Pat::wildcard_from_ty)
) -> Vec<Pat<'tcx>> {
debug!("wildcard_subpatterns({:#?}, {:?})", self, ty);
match ty.kind {
ty::Tuple(ref fs) => {
fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect()
}
ty::Slice(ty) | ty::Array(ty, _) => match *self {
FixedLenSlice(length) => (0..length).map(|_| Pat::wildcard_from_ty(ty)).collect(),
VarLenSlice(prefix, suffix) => {
(0..prefix + suffix).map(|_| Pat::wildcard_from_ty(ty)).collect()
}
ConstantValue(..) => vec![],
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)],
ty::Adt(adt, substs) => {
if adt.is_box() {
// Use T as the sub pattern type of Box<T>.
vec![Pat::wildcard_from_ty(substs.type_at(0))]
} else {
let variant = &adt.variants[self.variant_index_for_adt(cx, adt)];
let is_non_exhaustive =
variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
variant
.fields
.iter()
.map(|field| {
let is_visible =
adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
match (is_visible, is_non_exhaustive, is_uninhabited) {
// Treat all uninhabited types in non-exhaustive variants as `TyErr`.
(_, true, true) => cx.tcx.types.err,
// Treat all non-visible fields as `TyErr`. They can't appear in any
// other pattern from this match (because they are private), so their
// type does not matter - but we don't want to know they are
// uninhabited.
(false, ..) => cx.tcx.types.err,
(true, ..) => {
let ty = field.ty(cx.tcx, substs);
match ty.kind {
// If the field type returned is an array of an unknown size
// return an TyErr.
ty::Array(_, len)
if len
.try_eval_usize(cx.tcx, cx.param_env)
.is_none() =>
{
cx.tcx.types.err
}
_ => ty,
}
}
}
})
.map(Pat::wildcard_from_ty)
.collect()
}
}
_ => vec![],
}
}
/// This computes the arity of a constructor. The arity of a constructor
@ -880,7 +939,7 @@ fn apply<'a>(
/// Like `apply`, but where all the subpatterns are wildcards `_`.
fn apply_wildcards<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
let subpatterns = self.wildcard_subpatterns(cx, ty).rev();
let subpatterns = self.wildcard_subpatterns(cx, ty).into_iter().rev();
self.apply(cx, ty, subpatterns)
}
}
@ -1659,7 +1718,7 @@ fn is_useful_specialized<'p, 'a, 'tcx>(
) -> Usefulness<'tcx> {
debug!("is_useful_specialized({:#?}, {:#?}, {:?})", v, ctor, lty);
let ctor_wild_subpatterns_owned: Vec<_> = ctor.wildcard_subpatterns(cx, lty).collect();
let ctor_wild_subpatterns_owned: Vec<_> = ctor.wildcard_subpatterns(cx, lty);
let ctor_wild_subpatterns: Vec<_> = ctor_wild_subpatterns_owned.iter().collect();
let matrix = matrix.specialize_constructor(cx, &ctor, &ctor_wild_subpatterns);
v.specialize_constructor(cx, &ctor, &ctor_wild_subpatterns)
@ -1709,69 +1768,6 @@ fn pat_constructor<'tcx>(
}
}
/// This computes the types of the sub patterns that a constructor should be
/// expanded to.
///
/// For instance, a tuple pattern (43u32, 'a') has sub pattern types [u32, char].
fn constructor_sub_pattern_tys<'a, 'tcx>(
cx: &MatchCheckCtxt<'a, 'tcx>,
ctor: &Constructor<'tcx>,
ty: Ty<'tcx>,
) -> Vec<Ty<'tcx>> {
debug!("constructor_sub_pattern_tys({:#?}, {:?})", ctor, ty);
match ty.kind {
ty::Tuple(ref fs) => fs.into_iter().map(|t| t.expect_ty()).collect(),
ty::Slice(ty) | ty::Array(ty, _) => match *ctor {
FixedLenSlice(length) => (0..length).map(|_| ty).collect(),
VarLenSlice(prefix, suffix) => (0..prefix + suffix).map(|_| ty).collect(),
ConstantValue(..) => vec![],
_ => bug!("bad slice pattern {:?} {:?}", ctor, ty),
},
ty::Ref(_, rty, _) => vec![rty],
ty::Adt(adt, substs) => {
if adt.is_box() {
// Use T as the sub pattern type of Box<T>.
vec![substs.type_at(0)]
} else {
let variant = &adt.variants[ctor.variant_index_for_adt(cx, adt)];
let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
variant
.fields
.iter()
.map(|field| {
let is_visible =
adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
match (is_visible, is_non_exhaustive, is_uninhabited) {
// Treat all uninhabited types in non-exhaustive variants as `TyErr`.
(_, true, true) => cx.tcx.types.err,
// Treat all non-visible fields as `TyErr`. They can't appear in any
// other pattern from this match (because they are private), so their
// type does not matter - but we don't want to know they are
// uninhabited.
(false, ..) => cx.tcx.types.err,
(true, ..) => {
let ty = field.ty(cx.tcx, substs);
match ty.kind {
// If the field type returned is an array of an unknown size
// return an TyErr.
ty::Array(_, len)
if len.try_eval_usize(cx.tcx, cx.param_env).is_none() =>
{
cx.tcx.types.err
}
_ => ty,
}
}
}
})
.collect()
}
}
_ => vec![],
}
}
// checks whether a constant is equal to a user-written slice pattern. Only supports byte slices,
// meaning all other types will compare unequal and thus equal patterns often do not cause the
// second pattern to lint about unreachable match arms.