Make IntRange exclusive

This commit is contained in:
Nadrieril 2023-10-21 20:16:48 +02:00
parent feb769a5c9
commit 35fe75d8f3
2 changed files with 65 additions and 57 deletions

View File

@ -101,7 +101,7 @@ pub(crate) enum MaybeInfiniteInt {
NegInfinity, NegInfinity,
/// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`. /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`.
Finite(u128), Finite(u128),
/// The integer after `u128::MAX`. Used when we switch to exclusive ranges in `IntRange::split`. /// The integer after `u128::MAX`. We need it to represent `x..=u128::MAX` as an exclusive range.
JustAfterMax, JustAfterMax,
PosInfinity, PosInfinity,
} }
@ -140,8 +140,11 @@ fn from_pat_range_bdy<'tcx>(
PatRangeBoundary::PosInfinity => PosInfinity, PatRangeBoundary::PosInfinity => PosInfinity,
} }
} }
/// Used only for diagnostics. /// Used only for diagnostics.
/// This could change from finite to infinite if we got `usize::MAX+1` after range splitting. /// Note: it is possible to get `isize/usize::MAX+1` here, as explained in the doc for
/// [`IntRange::split`]. This cannot be represented as a `Const`, so we represent it with
/// `PosInfinity`.
fn to_diagnostic_pat_range_bdy<'tcx>( fn to_diagnostic_pat_range_bdy<'tcx>(
self, self,
ty: Ty<'tcx>, ty: Ty<'tcx>,
@ -168,20 +171,19 @@ fn to_diagnostic_pat_range_bdy<'tcx>(
} }
} }
fn is_finite(self) -> bool { /// Note: this will not turn a finite value into an infinite one or vice-versa.
matches!(self, Finite(_)) pub(crate) fn minus_one(self) -> Self {
}
fn minus_one(self) -> Self {
match self { match self {
Finite(n) => match n.checked_sub(1) { Finite(n) => match n.checked_sub(1) {
Some(m) => Finite(m), Some(m) => Finite(m),
None => NegInfinity, None => bug!(),
}, },
JustAfterMax => Finite(u128::MAX), JustAfterMax => Finite(u128::MAX),
x => x, x => x,
} }
} }
fn plus_one(self) -> Self { /// Note: this will not turn a finite value into an infinite one or vice-versa.
pub(crate) fn plus_one(self) -> Self {
match self { match self {
Finite(n) => match n.checked_add(1) { Finite(n) => match n.checked_add(1) {
Some(m) => Finite(m), Some(m) => Finite(m),
@ -193,18 +195,15 @@ fn plus_one(self) -> Self {
} }
} }
/// An inclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always /// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
/// store a contiguous range. /// store a contiguous range.
/// ///
/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset) /// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
/// space: i.e., `range.lo <= range.hi`. /// space: i.e., `range.lo < range.hi`.
///
/// Note: the range can be `NegInfinity..=NegInfinity` or `PosInfinity..=PosInfinity` to represent
/// the values before `isize::MIN` and after `isize::MAX`/`usize::MAX`.
#[derive(Clone, Copy, PartialEq, Eq)] #[derive(Clone, Copy, PartialEq, Eq)]
pub(crate) struct IntRange { pub(crate) struct IntRange {
pub(crate) lo: MaybeInfiniteInt, pub(crate) lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
pub(crate) hi: MaybeInfiniteInt, pub(crate) hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
} }
impl IntRange { impl IntRange {
@ -215,23 +214,25 @@ pub(super) fn is_integral(ty: Ty<'_>) -> bool {
/// Best effort; will not know that e.g. `255u8..` is a singleton. /// Best effort; will not know that e.g. `255u8..` is a singleton.
pub(super) fn is_singleton(&self) -> bool { pub(super) fn is_singleton(&self) -> bool {
self.lo == self.hi && self.lo.is_finite() // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
// to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
self.lo.plus_one() == self.hi
} }
#[inline] #[inline]
fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange { fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange {
let x = MaybeInfiniteInt::new_finite(tcx, ty, bits); let x = MaybeInfiniteInt::new_finite(tcx, ty, bits);
IntRange { lo: x, hi: x } IntRange { lo: x, hi: x.plus_one() }
} }
#[inline] #[inline]
fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange { fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
if end == RangeEnd::Excluded { if end == RangeEnd::Included {
hi = hi.minus_one(); hi = hi.plus_one();
} }
if lo > hi { if lo >= hi {
// This should have been caught earlier by E0030. // This should have been caught earlier by E0030.
bug!("malformed range pattern: {lo:?}..={hi:?}"); bug!("malformed range pattern: {lo:?}..{hi:?}");
} }
IntRange { lo, hi } IntRange { lo, hi }
} }
@ -241,7 +242,7 @@ fn is_subrange(&self, other: &Self) -> bool {
} }
fn intersection(&self, other: &Self) -> Option<Self> { fn intersection(&self, other: &Self) -> Option<Self> {
if self.lo <= other.hi && other.lo <= self.hi { if self.lo < other.hi && other.lo < self.hi {
Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) }) Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
} else { } else {
None None
@ -275,38 +276,45 @@ fn intersection(&self, other: &Self) -> Option<Self> {
/// ``` /// ```
/// where each sequence of dashes is an output range, and dashes outside parentheses are marked /// where each sequence of dashes is an output range, and dashes outside parentheses are marked
/// as `Presence::Missing`. /// as `Presence::Missing`.
///
/// ## `isize`/`usize`
///
/// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
/// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
/// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
/// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
/// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
/// not others. See discussions around the `precise_pointer_size_matching` feature for more
/// details.
///
/// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
/// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
/// fictitious ranges sensibly.
fn split( fn split(
&self, &self,
column_ranges: impl Iterator<Item = IntRange>, column_ranges: impl Iterator<Item = IntRange>,
) -> impl Iterator<Item = (Presence, IntRange)> { ) -> impl Iterator<Item = (Presence, IntRange)> {
// Make the range into an exclusive range.
fn unpack_intrange(range: IntRange) -> [MaybeInfiniteInt; 2] {
[range.lo, range.hi.plus_one()]
}
// The boundaries of ranges in `column_ranges` intersected with `self`. // The boundaries of ranges in `column_ranges` intersected with `self`.
// We do parenthesis matching for input ranges. A boundary counts as +1 if it starts // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
// a range and -1 if it ends it. When the count is > 0 between two boundaries, we // a range and -1 if it ends it. When the count is > 0 between two boundaries, we
// are within an input range. // are within an input range.
let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges
.filter_map(|r| self.intersection(&r)) .filter_map(|r| self.intersection(&r))
.map(unpack_intrange) .flat_map(|r| [(r.lo, 1), (r.hi, -1)])
.flat_map(|[lo, hi]| [(lo, 1), (hi, -1)])
.collect(); .collect();
// We sort by boundary, and for each boundary we sort the "closing parentheses" first. The // We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
// order of +1/-1 for a same boundary value is actually irrelevant, because we only look at // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
// the accumulated count between distinct boundary values. // the accumulated count between distinct boundary values.
boundaries.sort_unstable(); boundaries.sort_unstable();
let [self_start, self_end] = unpack_intrange(*self);
// Accumulate parenthesis counts. // Accumulate parenthesis counts.
let mut paren_counter = 0isize; let mut paren_counter = 0isize;
// Gather pairs of adjacent boundaries. // Gather pairs of adjacent boundaries.
let mut prev_bdy = self_start; let mut prev_bdy = self.lo;
boundaries boundaries
.into_iter() .into_iter()
// End with the end of the range. The count is ignored. // End with the end of the range. The count is ignored.
.chain(once((self_end, 0))) .chain(once((self.hi, 0)))
// List pairs of adjacent boundaries and the count between them. // List pairs of adjacent boundaries and the count between them.
.map(move |(bdy, delta)| { .map(move |(bdy, delta)| {
// `delta` affects the count as we cross `bdy`, so the relevant count between // `delta` affects the count as we cross `bdy`, so the relevant count between
@ -322,21 +330,22 @@ fn split(
.map(move |(prev_bdy, paren_count, bdy)| { .map(move |(prev_bdy, paren_count, bdy)| {
use Presence::*; use Presence::*;
let presence = if paren_count > 0 { Seen } else { Unseen }; let presence = if paren_count > 0 { Seen } else { Unseen };
// Turn back into an inclusive range. let range = IntRange { lo: prev_bdy, hi: bdy };
let range = IntRange::from_range(prev_bdy, bdy, RangeEnd::Excluded);
(presence, range) (presence, range)
}) })
} }
/// Whether the range denotes the values before `isize::MIN` or the values after /// Whether the range denotes the fictitious values before `isize::MIN` or after
/// `usize::MAX`/`isize::MAX`. /// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
pub(crate) fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool { pub(crate) fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool {
// First check if we are usize/isize to avoid unnecessary `to_diagnostic_pat_range_bdy`.
ty.is_ptr_sized_integral() && !tcx.features().precise_pointer_size_matching && { ty.is_ptr_sized_integral() && !tcx.features().precise_pointer_size_matching && {
// The two invalid ranges are `NegInfinity..isize::MIN` (represented as
// `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `to_diagnostic_pat_range_bdy`
// converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `self.lo`
// otherwise.
let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx); let lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
let hi = self.hi.to_diagnostic_pat_range_bdy(ty, tcx);
matches!(lo, PatRangeBoundary::PosInfinity) matches!(lo, PatRangeBoundary::PosInfinity)
|| matches!(hi, PatRangeBoundary::NegInfinity) || matches!(self.hi, MaybeInfiniteInt::Finite(0))
} }
} }
/// Only used for displaying the range. /// Only used for displaying the range.
@ -348,28 +357,27 @@ pub(super) fn to_diagnostic_pat<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) ->
let value = lo.as_finite().unwrap(); let value = lo.as_finite().unwrap();
PatKind::Constant { value } PatKind::Constant { value }
} else { } else {
// We convert to an inclusive range for diagnostics.
let mut end = RangeEnd::Included;
let mut lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx); let mut lo = self.lo.to_diagnostic_pat_range_bdy(ty, tcx);
let mut hi = self.hi.to_diagnostic_pat_range_bdy(ty, tcx);
let end = if hi.is_finite() {
RangeEnd::Included
} else {
// `0..=` isn't a valid pattern.
RangeEnd::Excluded
};
if matches!(hi, PatRangeBoundary::NegInfinity) {
// The range denotes the values before `isize::MIN`.
let c = ty.numeric_min_val(tcx).unwrap();
let value = mir::Const::from_ty_const(c, tcx);
hi = PatRangeBoundary::Finite(value);
}
if matches!(lo, PatRangeBoundary::PosInfinity) { if matches!(lo, PatRangeBoundary::PosInfinity) {
// The range denotes the values after `usize::MAX`/`isize::MAX`. // The only reason to get `PosInfinity` here is the special case where
// We represent this as `usize::MAX..` which is slightly incorrect but probably // `to_diagnostic_pat_range_bdy` found `{u,i}size::MAX+1`. So the range denotes the
// clear enough. // fictitious values after `{u,i}size::MAX` (see [`IntRange::split`] for why we do
// this). We show this to the user as `usize::MAX..` which is slightly incorrect but
// probably clear enough.
let c = ty.numeric_max_val(tcx).unwrap(); let c = ty.numeric_max_val(tcx).unwrap();
let value = mir::Const::from_ty_const(c, tcx); let value = mir::Const::from_ty_const(c, tcx);
lo = PatRangeBoundary::Finite(value); lo = PatRangeBoundary::Finite(value);
} }
let hi = if matches!(self.hi, MaybeInfiniteInt::Finite(0)) {
// The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
end = RangeEnd::Excluded;
self.hi
} else {
self.hi.minus_one()
};
let hi = hi.to_diagnostic_pat_range_bdy(ty, tcx);
PatKind::Range(Box::new(PatRange { lo, hi, end, ty })) PatKind::Range(Box::new(PatRange { lo, hi, end, ty }))
}; };
@ -384,7 +392,7 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Finite(lo) = self.lo { if let Finite(lo) = self.lo {
write!(f, "{lo}")?; write!(f, "{lo}")?;
} }
write!(f, "{}", RangeEnd::Included)?; write!(f, "{}", RangeEnd::Excluded)?;
if let Finite(hi) = self.hi { if let Finite(hi) = self.hi {
write!(f, "{hi}")?; write!(f, "{hi}")?;
} }

View File

@ -1052,7 +1052,7 @@ fn lint_overlapping_range_endpoints<'p, 'tcx>(
emit_lint(overlap_range, this_span, &prefixes); emit_lint(overlap_range, this_span, &prefixes);
} }
suffixes.push(this_span) suffixes.push(this_span)
} else if this_range.hi == overlap { } else if this_range.hi == overlap.plus_one() {
// `this_range` looks like `this_range.lo..=overlap`; it overlaps with any // `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
// ranges that look like `overlap..=hi`. // ranges that look like `overlap..=hi`.
if !suffixes.is_empty() { if !suffixes.is_empty() {