Make trans const eval error on overflow and NaN, matching HIR const eval.

This commit is contained in:
Robin Kruppe 2017-10-15 22:28:49 +02:00
parent e999e7b8b2
commit 354a5cb250
6 changed files with 156 additions and 82 deletions

View File

@ -96,7 +96,7 @@ pub fn and<T>(self, value: T) -> StatusAnd<T> {
}
impl<T> StatusAnd<T> {
fn map<F: FnOnce(T) -> U, U>(self, f: F) -> StatusAnd<U> {
pub fn map<F: FnOnce(T) -> U, U>(self, f: F) -> StatusAnd<U> {
StatusAnd {
status: self.status,
value: f(self.value),

View File

@ -628,8 +628,6 @@ pub fn LLVMStructTypeInContext(C: ContextRef,
pub fn LLVMConstIntGetSExtValue(ConstantVal: ValueRef) -> c_longlong;
pub fn LLVMRustConstInt128Get(ConstantVal: ValueRef, SExt: bool,
high: *mut u64, low: *mut u64) -> bool;
pub fn LLVMRustIsConstantFP(ConstantVal: ValueRef) -> bool;
pub fn LLVMRustConstFloatGetBits(ConstantVal: ValueRef) -> u64;
// Operations on composite constants

View File

@ -21,7 +21,7 @@
use rustc::ty::layout::{self, LayoutTyper};
use rustc::ty::cast::{CastTy, IntTy};
use rustc::ty::subst::{Kind, Substs, Subst};
use rustc_apfloat::{ieee, Float};
use rustc_apfloat::{ieee, Float, Status};
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use {adt, base, machine};
use abi::{self, Abi};
@ -690,16 +690,18 @@ fn const_rvalue(&self, rvalue: &mir::Rvalue<'tcx>,
llvm::LLVMConstIntCast(llval, ll_t_out.to_ref(), s)
}
(CastTy::Int(_), CastTy::Float) => {
const_cast_int_to_float(self.ccx, llval, signed, ll_t_out)
cast_const_int_to_float(self.ccx, llval, signed, ll_t_out)
}
(CastTy::Float, CastTy::Float) => {
llvm::LLVMConstFPCast(llval, ll_t_out.to_ref())
}
(CastTy::Float, CastTy::Int(IntTy::I)) => {
const_cast_from_float(&operand, true, ll_t_out)
cast_const_float_to_int(self.ccx, &operand,
true, ll_t_out, span)
}
(CastTy::Float, CastTy::Int(_)) => {
const_cast_from_float(&operand, false, ll_t_out)
cast_const_float_to_int(self.ccx, &operand,
false, ll_t_out, span)
}
(CastTy::Ptr(_), CastTy::Ptr(_)) |
(CastTy::FnPtr, CastTy::Ptr(_)) |
@ -952,36 +954,49 @@ pub fn const_scalar_checked_binop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
}
}
unsafe fn const_cast_from_float(operand: &Const, signed: bool, int_ty: Type) -> ValueRef {
unsafe fn cast_const_float_to_int(ccx: &CrateContext,
operand: &Const,
signed: bool,
int_ty: Type,
span: Span) -> ValueRef {
let llval = operand.llval;
// Note: this breaks if addresses can be turned into integers (is that possible?)
// But at least an ICE is better than producing undef.
assert!(llvm::LLVMRustIsConstantFP(llval),
"const_cast_from_float: invalid llval {:?}", Value(llval));
let bits = llvm::LLVMRustConstFloatGetBits(llval) as u128;
let int_width = int_ty.int_width() as usize;
let float_bits = match operand.ty.sty {
ty::TyFloat(fty) => fty.bit_width(),
_ => bug!("const_cast_from_float: operand not a float"),
_ => bug!("cast_const_float_to_int: operand not a float"),
};
// Ignore the Status, to_i128 does the Right Thing(tm) on overflow and NaN even though it
// sets INVALID_OP.
// Note: this breaks if llval is a complex constant expression rather than a simple constant.
// One way that might happen would be if addresses could be turned into integers in constant
// expressions, but that doesn't appear to be possible?
// In any case, an ICE is better than producing undef.
let llval_bits = consts::bitcast(llval, Type::ix(ccx, float_bits as u64));
let bits = const_to_opt_u128(llval_bits, false).unwrap_or_else(|| {
panic!("could not get bits of constant float {:?}",
Value(llval));
});
let int_width = int_ty.int_width() as usize;
// Try to convert, but report an error for overflow and NaN. This matches HIR const eval.
let cast_result = match float_bits {
32 if signed => ieee::Single::from_bits(bits).to_i128(int_width).value as u128,
64 if signed => ieee::Double::from_bits(bits).to_i128(int_width).value as u128,
32 => ieee::Single::from_bits(bits).to_u128(int_width).value,
64 => ieee::Double::from_bits(bits).to_u128(int_width).value,
32 if signed => ieee::Single::from_bits(bits).to_i128(int_width).map(|v| v as u128),
64 if signed => ieee::Double::from_bits(bits).to_i128(int_width).map(|v| v as u128),
32 => ieee::Single::from_bits(bits).to_u128(int_width),
64 => ieee::Double::from_bits(bits).to_u128(int_width),
n => bug!("unsupported float width {}", n),
};
C_big_integral(int_ty, cast_result)
if cast_result.status.contains(Status::INVALID_OP) {
let err = ConstEvalErr { span: span, kind: ErrKind::CannotCast };
err.report(ccx.tcx(), span, "expression");
}
C_big_integral(int_ty, cast_result.value)
}
unsafe fn const_cast_int_to_float(ccx: &CrateContext,
llval: ValueRef,
signed: bool,
float_ty: Type) -> ValueRef {
// Note: this breaks if addresses can be turned into integers (is that possible?)
// But at least an ICE is better than producing undef.
unsafe fn cast_const_int_to_float(ccx: &CrateContext,
llval: ValueRef,
signed: bool,
float_ty: Type) -> ValueRef {
// Note: this breaks if llval is a complex constant expression rather than a simple constant.
// One way that might happen would be if addresses could be turned into integers in constant
// expressions, but that doesn't appear to be possible?
// In any case, an ICE is better than producing undef.
let value = const_to_opt_u128(llval, signed).unwrap_or_else(|| {
panic!("could not get z128 value of constant integer {:?}",
Value(llval));

View File

@ -1373,19 +1373,6 @@ extern "C" bool LLVMRustConstInt128Get(LLVMValueRef CV, bool sext, uint64_t *hig
return true;
}
extern "C" uint64_t LLVMRustConstFloatGetBits(LLVMValueRef CV) {
auto C = unwrap<llvm::ConstantFP>(CV);
APInt Bits = C->getValueAPF().bitcastToAPInt();
if (!Bits.isIntN(64)) {
report_fatal_error("Float bit pattern >64 bits");
}
return Bits.getLimitedValue();
}
extern "C" bool LLVMRustIsConstantFP(LLVMValueRef CV) {
return isa<llvm::ConstantFP>(unwrap<llvm::Value>(CV));
}
extern "C" LLVMContextRef LLVMRustGetValueContext(LLVMValueRef V) {
return wrap(&unwrap(V)->getContext());
}

View File

@ -0,0 +1,61 @@
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(i128_type)]
#![allow(const_err)] // this test is only about hard errors
use std::{f32, f64};
// Forces evaluation of constants, triggering hard error
fn force<T>(_: T) {}
fn main() {
{ const X: u16 = -1. as u16; force(X); } //~ ERROR constant evaluation error
{ const X: u128 = -100. as u128; force(X); } //~ ERROR constant evaluation error
{ const X: i8 = f32::NAN as i8; force(X); } //~ ERROR constant evaluation error
{ const X: i32 = f32::NAN as i32; force(X); } //~ ERROR constant evaluation error
{ const X: u64 = f32::NAN as u64; force(X); } //~ ERROR constant evaluation error
{ const X: u128 = f32::NAN as u128; force(X); } //~ ERROR constant evaluation error
{ const X: i8 = f32::INFINITY as i8; force(X); } //~ ERROR constant evaluation error
{ const X: u32 = f32::INFINITY as u32; force(X); } //~ ERROR constant evaluation error
{ const X: i128 = f32::INFINITY as i128; force(X); } //~ ERROR constant evaluation error
{ const X: u128 = f32::INFINITY as u128; force(X); } //~ ERROR constant evaluation error
{ const X: u8 = f32::NEG_INFINITY as u8; force(X); } //~ ERROR constant evaluation error
{ const X: u16 = f32::NEG_INFINITY as u16; force(X); } //~ ERROR constant evaluation error
{ const X: i64 = f32::NEG_INFINITY as i64; force(X); } //~ ERROR constant evaluation error
{ const X: i128 = f32::NEG_INFINITY as i128; force(X); } //~ ERROR constant evaluation error
{ const X: i8 = f64::NAN as i8; force(X); } //~ ERROR constant evaluation error
{ const X: i32 = f64::NAN as i32; force(X); } //~ ERROR constant evaluation error
{ const X: u64 = f64::NAN as u64; force(X); } //~ ERROR constant evaluation error
{ const X: u128 = f64::NAN as u128; force(X); } //~ ERROR constant evaluation error
{ const X: i8 = f64::INFINITY as i8; force(X); } //~ ERROR constant evaluation error
{ const X: u32 = f64::INFINITY as u32; force(X); } //~ ERROR constant evaluation error
{ const X: i128 = f64::INFINITY as i128; force(X); } //~ ERROR constant evaluation error
{ const X: u128 = f64::INFINITY as u128; force(X); } //~ ERROR constant evaluation error
{ const X: u8 = f64::NEG_INFINITY as u8; force(X); } //~ ERROR constant evaluation error
{ const X: u16 = f64::NEG_INFINITY as u16; force(X); } //~ ERROR constant evaluation error
{ const X: i64 = f64::NEG_INFINITY as i64; force(X); } //~ ERROR constant evaluation error
{ const X: i128 = f64::NEG_INFINITY as i128; force(X); } //~ ERROR constant evaluation error
{ const X: u8 = 256. as u8; force(X); } //~ ERROR constant evaluation error
{ const X: i8 = -129. as i8; force(X); } //~ ERROR constant evaluation error
{ const X: i8 = 128. as i8; force(X); } //~ ERROR constant evaluation error
{ const X: i32 = 2147483648. as i32; force(X); } //~ ERROR constant evaluation error
{ const X: i32 = -2147483904. as i32; force(X); } //~ ERROR constant evaluation error
{ const X: u32 = 4294967296. as u32; force(X); } //~ ERROR constant evaluation error
{ const X: u128 = 1e40 as u128; force(X); } //~ ERROR constant evaluation error
{ const X: i128 = 1e40 as i128; force(X); } //~ ERROR constant evaluation error
}

View File

@ -1,4 +1,4 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
@ -22,15 +22,28 @@ macro_rules! test {
($val:expr, $src_ty:ident -> $dest_ty:ident, $expected:expr) => (
// black_box disables constant evaluation to test run-time conversions:
assert_eq!(black_box::<$src_ty>($val) as $dest_ty, $expected,
"run time {} -> {}", stringify!($src_ty), stringify!($dest_ty));
// ... whereas this variant triggers constant evaluation:
"run-time {} -> {}", stringify!($src_ty), stringify!($dest_ty));
);
($fval:expr, f* -> $ity:ident, $ival:expr) => (
test!($fval, f32 -> $ity, $ival);
test!($fval, f64 -> $ity, $ival);
)
}
// This macro tests const eval in addition to run-time evaluation.
// If and when saturating casts are adopted, this macro should be merged with test!() to ensure
// that run-time and const eval agree on inputs that currently trigger a const eval error.
macro_rules! test_c {
($val:expr, $src_ty:ident -> $dest_ty:ident, $expected:expr) => ({
test!($val, $src_ty -> $dest_ty, $expected);
{
const X: $src_ty = $val;
const Y: $dest_ty = X as $dest_ty;
assert_eq!(Y, $expected,
"const eval {} -> {}", stringify!($src_ty), stringify!($dest_ty));
}
);
});
($fval:expr, f* -> $ity:ident, $ival:expr) => (
test!($fval, f32 -> $ity, $ival);
@ -48,11 +61,11 @@ macro_rules! common_fptoi_tests {
// as well, the test is just slightly misplaced.
test!($ity::MIN as $fty, $fty -> $ity, $ity::MIN);
test!($ity::MAX as $fty, $fty -> $ity, $ity::MAX);
test!(0., $fty -> $ity, 0);
test!($fty::MIN_POSITIVE, $fty -> $ity, 0);
test_c!(0., $fty -> $ity, 0);
test_c!($fty::MIN_POSITIVE, $fty -> $ity, 0);
test!(-0.9, $fty -> $ity, 0);
test!(1., $fty -> $ity, 1);
test!(42., $fty -> $ity, 42);
test_c!(1., $fty -> $ity, 1);
test_c!(42., $fty -> $ity, 42);
)+ });
(f* -> $($ity:ident)+) => ({
@ -84,58 +97,58 @@ pub fn main() {
// The following tests cover edge cases for some integer types.
// u8
test!(254., f* -> u8, 254);
// # u8
test_c!(254., f* -> u8, 254);
test!(256., f* -> u8, 255);
// i8
test!(-127., f* -> i8, -127);
// # i8
test_c!(-127., f* -> i8, -127);
test!(-129., f* -> i8, -128);
test!(126., f* -> i8, 126);
test_c!(126., f* -> i8, 126);
test!(128., f* -> i8, 127);
// i32
// # i32
// -2147483648. is i32::MIN (exactly)
test!(-2147483648., f* -> i32, i32::MIN);
test_c!(-2147483648., f* -> i32, i32::MIN);
// 2147483648. is i32::MAX rounded up
test!(2147483648., f32 -> i32, 2147483647);
// With 24 significand bits, floats with magnitude in [2^30 + 1, 2^31] are rounded to
// multiples of 2^7. Therefore, nextDown(round(i32::MAX)) is 2^31 - 128:
test!(2147483520., f32 -> i32, 2147483520);
test_c!(2147483520., f32 -> i32, 2147483520);
// Similarly, nextUp(i32::MIN) is i32::MIN + 2^8 and nextDown(i32::MIN) is i32::MIN - 2^7
test!(-2147483904., f* -> i32, i32::MIN);
test!(-2147483520., f* -> i32, -2147483520);
test_c!(-2147483520., f* -> i32, -2147483520);
// u32 -- round(MAX) and nextUp(round(MAX))
test!(4294967040., f* -> u32, 4294967040);
// # u32
// round(MAX) and nextUp(round(MAX))
test_c!(4294967040., f* -> u32, 4294967040);
test!(4294967296., f* -> u32, 4294967295);
// u128
// # float->int
test!(f32::MAX, f32 -> u128, 0xffffff00000000000000000000000000);
// # u128
// float->int:
test_c!(f32::MAX, f32 -> u128, 0xffffff00000000000000000000000000);
// nextDown(f32::MAX) = 2^128 - 2 * 2^104
const SECOND_LARGEST_F32: f32 = 340282326356119256160033759537265639424.;
test!(SECOND_LARGEST_F32, f32 -> u128, 0xfffffe00000000000000000000000000);
// # int->float
// f32::MAX - 0.5 ULP and smaller should be rounded down
test!(0xfffffe00000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
test!(0xfffffe7fffffffffffffffffffffffff, u128 -> f32, SECOND_LARGEST_F32);
test!(0xfffffe80000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
// numbers within < 0.5 ULP of f32::MAX it should be rounded to f32::MAX
test!(0xfffffe80000000000000000000000001, u128 -> f32, f32::MAX);
test!(0xfffffeffffffffffffffffffffffffff, u128 -> f32, f32::MAX);
test!(0xffffff00000000000000000000000000, u128 -> f32, f32::MAX);
test!(0xffffff00000000000000000000000001, u128 -> f32, f32::MAX);
test!(0xffffff7fffffffffffffffffffffffff, u128 -> f32, f32::MAX);
// f32::MAX + 0.5 ULP and greater should be rounded to infinity
test!(0xffffff80000000000000000000000000, u128 -> f32, f32::INFINITY);
test!(0xffffff80000000f00000000000000000, u128 -> f32, f32::INFINITY);
test!(0xffffff87ffffffffffffffff00000001, u128 -> f32, f32::INFINITY);
test_c!(SECOND_LARGEST_F32, f32 -> u128, 0xfffffe00000000000000000000000000);
test!(!0, u128 -> f32, f32::INFINITY);
// int->float:
// f32::MAX - 0.5 ULP and smaller should be rounded down
test_c!(0xfffffe00000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
test_c!(0xfffffe7fffffffffffffffffffffffff, u128 -> f32, SECOND_LARGEST_F32);
test_c!(0xfffffe80000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
// numbers within < 0.5 ULP of f32::MAX it should be rounded to f32::MAX
test_c!(0xfffffe80000000000000000000000001, u128 -> f32, f32::MAX);
test_c!(0xfffffeffffffffffffffffffffffffff, u128 -> f32, f32::MAX);
test_c!(0xffffff00000000000000000000000000, u128 -> f32, f32::MAX);
test_c!(0xffffff00000000000000000000000001, u128 -> f32, f32::MAX);
test_c!(0xffffff7fffffffffffffffffffffffff, u128 -> f32, f32::MAX);
// f32::MAX + 0.5 ULP and greater should be rounded to infinity
test_c!(0xffffff80000000000000000000000000, u128 -> f32, f32::INFINITY);
test_c!(0xffffff80000000f00000000000000000, u128 -> f32, f32::INFINITY);
test_c!(0xffffff87ffffffffffffffff00000001, u128 -> f32, f32::INFINITY);
// u128->f64 should not be affected by the u128->f32 checks
test!(0xffffff80000000000000000000000000, u128 -> f64,
test_c!(0xffffff80000000000000000000000000, u128 -> f64,
340282356779733661637539395458142568448.0);
test!(u128::MAX, u128 -> f64, 340282366920938463463374607431768211455.0);
test_c!(u128::MAX, u128 -> f64, 340282366920938463463374607431768211455.0);
}