std: Clean up process spawn impl on unix
* De-indent quite a bit by removing usage of FnOnce closures * Clearly separate code for the parent/child after the fork * Use `fs2::{File, OpenOptions}` instead of calling `open` manually * Use RAII to close I/O objects wherever possible * Remove loop for closing all file descriptors, all our own ones are now `CLOEXEC` by default so they cannot be inherited
This commit is contained in:
parent
d6c72306c8
commit
33a2191d0b
@ -340,7 +340,7 @@ fn setup_io(io: &StdioImp, fd: libc::c_int, readable: bool)
|
||||
(Some(AnonPipe::from_fd(fd)), None)
|
||||
}
|
||||
Piped => {
|
||||
let (reader, writer) = try!(unsafe { pipe2::anon_pipe() });
|
||||
let (reader, writer) = try!(pipe2::anon_pipe());
|
||||
if readable {
|
||||
(Some(reader), Some(writer))
|
||||
} else {
|
||||
|
@ -159,6 +159,8 @@ pub fn getpwuid_r(uid: libc::uid_t,
|
||||
pub fn utimes(filename: *const libc::c_char,
|
||||
times: *const libc::timeval) -> libc::c_int;
|
||||
pub fn gai_strerror(errcode: libc::c_int) -> *const libc::c_char;
|
||||
pub fn setgroups(ngroups: libc::c_int,
|
||||
ptr: *const libc::c_void) -> libc::c_int;
|
||||
}
|
||||
|
||||
#[cfg(any(target_os = "macos", target_os = "ios"))]
|
||||
|
@ -205,13 +205,17 @@ fn flag(&mut self, bit: c_int, on: bool) {
|
||||
|
||||
impl File {
|
||||
pub fn open(path: &Path, opts: &OpenOptions) -> io::Result<File> {
|
||||
let path = try!(cstr(path));
|
||||
File::open_c(&path, opts)
|
||||
}
|
||||
|
||||
pub fn open_c(path: &CStr, opts: &OpenOptions) -> io::Result<File> {
|
||||
let flags = opts.flags | match (opts.read, opts.write) {
|
||||
(true, true) => libc::O_RDWR,
|
||||
(false, true) => libc::O_WRONLY,
|
||||
(true, false) |
|
||||
(false, false) => libc::O_RDONLY,
|
||||
};
|
||||
let path = try!(cstr(path));
|
||||
let fd = try!(cvt_r(|| unsafe {
|
||||
libc::open(path.as_ptr(), flags, opts.mode)
|
||||
}));
|
||||
@ -220,6 +224,8 @@ pub fn open(path: &Path, opts: &OpenOptions) -> io::Result<File> {
|
||||
Ok(File(fd))
|
||||
}
|
||||
|
||||
pub fn into_fd(self) -> FileDesc { self.0 }
|
||||
|
||||
pub fn file_attr(&self) -> io::Result<FileAttr> {
|
||||
let mut stat: libc::stat = unsafe { mem::zeroed() };
|
||||
try!(cvt(unsafe { libc::fstat(self.0.raw(), &mut stat) }));
|
||||
|
@ -20,11 +20,10 @@
|
||||
|
||||
pub struct AnonPipe(FileDesc);
|
||||
|
||||
pub unsafe fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
|
||||
pub fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
|
||||
let mut fds = [0; 2];
|
||||
if libc::pipe(fds.as_mut_ptr()) == 0 {
|
||||
Ok((AnonPipe::from_fd(fds[0]),
|
||||
AnonPipe::from_fd(fds[1])))
|
||||
if unsafe { libc::pipe(fds.as_mut_ptr()) == 0 } {
|
||||
Ok((AnonPipe::from_fd(fds[0]), AnonPipe::from_fd(fds[1])))
|
||||
} else {
|
||||
Err(io::Error::last_os_error())
|
||||
}
|
||||
@ -45,7 +44,7 @@ pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
|
||||
self.0.write(buf)
|
||||
}
|
||||
|
||||
pub fn raw(&self) -> libc::c_int {
|
||||
self.0.raw()
|
||||
pub fn into_fd(self) -> FileDesc {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
@ -13,14 +13,14 @@
|
||||
|
||||
use collections::HashMap;
|
||||
use env;
|
||||
use ffi::{OsString, OsStr, CString};
|
||||
use ffi::{OsString, OsStr, CString, CStr};
|
||||
use fmt;
|
||||
use io::{self, Error, ErrorKind};
|
||||
use libc::{self, pid_t, c_void, c_int, gid_t, uid_t};
|
||||
use mem;
|
||||
use ptr;
|
||||
use sys::pipe2::AnonPipe;
|
||||
use sys::{self, retry, c, cvt};
|
||||
use sys::fs2::{File, OpenOptions};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Command
|
||||
@ -128,221 +128,178 @@ pub unsafe fn kill(&self) -> io::Result<()> {
|
||||
}
|
||||
|
||||
pub fn spawn(cfg: &Command,
|
||||
in_fd: Option<AnonPipe>, out_fd: Option<AnonPipe>, err_fd: Option<AnonPipe>)
|
||||
-> io::Result<Process>
|
||||
{
|
||||
use libc::funcs::posix88::unistd::{fork, dup2, close, chdir, execvp};
|
||||
in_fd: Option<AnonPipe>,
|
||||
out_fd: Option<AnonPipe>,
|
||||
err_fd: Option<AnonPipe>) -> io::Result<Process> {
|
||||
let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null());
|
||||
|
||||
mod rustrt {
|
||||
extern {
|
||||
pub fn rust_unset_sigprocmask();
|
||||
let (envp, _a, _b) = make_envp(cfg.env.as_ref());
|
||||
let (argv, _a) = make_argv(&cfg.program, &cfg.args);
|
||||
let (input, output) = try!(sys::pipe2::anon_pipe());
|
||||
|
||||
let pid = unsafe {
|
||||
match libc::fork() {
|
||||
0 => {
|
||||
drop(input);
|
||||
Process::child_after_fork(cfg, output, argv, envp, dirp,
|
||||
in_fd, out_fd, err_fd)
|
||||
}
|
||||
n if n < 0 => return Err(Error::last_os_error()),
|
||||
n => n,
|
||||
}
|
||||
};
|
||||
|
||||
let p = Process{ pid: pid };
|
||||
drop(output);
|
||||
let mut bytes = [0; 8];
|
||||
|
||||
// loop to handle EINTR
|
||||
loop {
|
||||
match input.read(&mut bytes) {
|
||||
Ok(0) => return Ok(p),
|
||||
Ok(8) => {
|
||||
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
|
||||
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
|
||||
let errno = combine(&bytes[0.. 4]);
|
||||
assert!(p.wait().is_ok(),
|
||||
"wait() should either return Ok or panic");
|
||||
return Err(Error::from_raw_os_error(errno))
|
||||
}
|
||||
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
|
||||
Err(e) => {
|
||||
assert!(p.wait().is_ok(),
|
||||
"wait() should either return Ok or panic");
|
||||
panic!("the CLOEXEC pipe failed: {:?}", e)
|
||||
},
|
||||
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
|
||||
assert!(p.wait().is_ok(),
|
||||
"wait() should either return Ok or panic");
|
||||
panic!("short read on the CLOEXEC pipe")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn set_cloexec(fd: c_int) {
|
||||
let ret = c::ioctl(fd, c::FIOCLEX);
|
||||
assert_eq!(ret, 0);
|
||||
fn combine(arr: &[u8]) -> i32 {
|
||||
let a = arr[0] as u32;
|
||||
let b = arr[1] as u32;
|
||||
let c = arr[2] as u32;
|
||||
let d = arr[3] as u32;
|
||||
|
||||
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
|
||||
}
|
||||
}
|
||||
|
||||
// And at this point we've reached a special time in the life of the
|
||||
// child. The child must now be considered hamstrung and unable to
|
||||
// do anything other than syscalls really. Consider the following
|
||||
// scenario:
|
||||
//
|
||||
// 1. Thread A of process 1 grabs the malloc() mutex
|
||||
// 2. Thread B of process 1 forks(), creating thread C
|
||||
// 3. Thread C of process 2 then attempts to malloc()
|
||||
// 4. The memory of process 2 is the same as the memory of
|
||||
// process 1, so the mutex is locked.
|
||||
//
|
||||
// This situation looks a lot like deadlock, right? It turns out
|
||||
// that this is what pthread_atfork() takes care of, which is
|
||||
// presumably implemented across platforms. The first thing that
|
||||
// threads to *before* forking is to do things like grab the malloc
|
||||
// mutex, and then after the fork they unlock it.
|
||||
//
|
||||
// Despite this information, libnative's spawn has been witnessed to
|
||||
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
|
||||
// all collected backtraces point at malloc/free traffic in the
|
||||
// child spawned process.
|
||||
//
|
||||
// For this reason, the block of code below should contain 0
|
||||
// invocations of either malloc of free (or their related friends).
|
||||
//
|
||||
// As an example of not having malloc/free traffic, we don't close
|
||||
// this file descriptor by dropping the FileDesc (which contains an
|
||||
// allocation). Instead we just close it manually. This will never
|
||||
// have the drop glue anyway because this code never returns (the
|
||||
// child will either exec() or invoke libc::exit)
|
||||
unsafe fn child_after_fork(cfg: &Command,
|
||||
mut output: AnonPipe,
|
||||
argv: *const *const libc::c_char,
|
||||
envp: *const libc::c_void,
|
||||
dirp: *const libc::c_char,
|
||||
in_fd: Option<AnonPipe>,
|
||||
out_fd: Option<AnonPipe>,
|
||||
err_fd: Option<AnonPipe>) -> ! {
|
||||
fn fail(output: &mut AnonPipe) -> ! {
|
||||
let errno = sys::os::errno() as u32;
|
||||
let bytes = [
|
||||
(errno >> 24) as u8,
|
||||
(errno >> 16) as u8,
|
||||
(errno >> 8) as u8,
|
||||
(errno >> 0) as u8,
|
||||
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
|
||||
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
|
||||
];
|
||||
// pipe I/O up to PIPE_BUF bytes should be atomic, and then we want
|
||||
// to be sure we *don't* run at_exit destructors as we're being torn
|
||||
// down regardless
|
||||
assert!(output.write(&bytes).is_ok());
|
||||
unsafe { libc::_exit(1) }
|
||||
}
|
||||
|
||||
#[cfg(all(target_os = "android", target_arch = "aarch64"))]
|
||||
unsafe fn getdtablesize() -> c_int {
|
||||
libc::sysconf(libc::consts::os::sysconf::_SC_OPEN_MAX) as c_int
|
||||
}
|
||||
// If a stdio file descriptor is set to be ignored, we don't
|
||||
// actually close it, but rather open up /dev/null into that
|
||||
// file descriptor. Otherwise, the first file descriptor opened
|
||||
// up in the child would be numbered as one of the stdio file
|
||||
// descriptors, which is likely to wreak havoc.
|
||||
let setup = |src: Option<AnonPipe>, dst: c_int| {
|
||||
src.map(|p| p.into_fd()).or_else(|| {
|
||||
let mut opts = OpenOptions::new();
|
||||
opts.read(dst == libc::STDIN_FILENO);
|
||||
opts.write(dst != libc::STDIN_FILENO);
|
||||
let devnull = CStr::from_ptr(b"/dev/null\0".as_ptr()
|
||||
as *const _);
|
||||
File::open_c(devnull, &opts).ok().map(|f| f.into_fd())
|
||||
}).map(|fd| {
|
||||
fd.unset_cloexec();
|
||||
retry(|| libc::dup2(fd.raw(), dst)) != -1
|
||||
}).unwrap_or(false)
|
||||
};
|
||||
|
||||
#[cfg(not(all(target_os = "android", target_arch = "aarch64")))]
|
||||
unsafe fn getdtablesize() -> c_int {
|
||||
libc::funcs::bsd44::getdtablesize()
|
||||
}
|
||||
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
|
||||
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
|
||||
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
|
||||
|
||||
let dirp = cfg.cwd.as_ref().map(|c| c.as_ptr()).unwrap_or(ptr::null());
|
||||
|
||||
with_envp(cfg.env.as_ref(), |envp: *const c_void| {
|
||||
with_argv(&cfg.program, &cfg.args, |argv: *const *const libc::c_char| unsafe {
|
||||
let (input, mut output) = try!(sys::pipe2::anon_pipe());
|
||||
|
||||
// We may use this in the child, so perform allocations before the
|
||||
// fork
|
||||
let devnull = b"/dev/null\0";
|
||||
|
||||
set_cloexec(output.raw());
|
||||
|
||||
let pid = fork();
|
||||
if pid < 0 {
|
||||
return Err(Error::last_os_error())
|
||||
} else if pid > 0 {
|
||||
#[inline]
|
||||
fn combine(arr: &[u8]) -> i32 {
|
||||
let a = arr[0] as u32;
|
||||
let b = arr[1] as u32;
|
||||
let c = arr[2] as u32;
|
||||
let d = arr[3] as u32;
|
||||
|
||||
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
|
||||
}
|
||||
|
||||
let p = Process{ pid: pid };
|
||||
drop(output);
|
||||
let mut bytes = [0; 8];
|
||||
|
||||
// loop to handle EINTER
|
||||
loop {
|
||||
match input.read(&mut bytes) {
|
||||
Ok(8) => {
|
||||
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
|
||||
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
|
||||
let errno = combine(&bytes[0.. 4]);
|
||||
assert!(p.wait().is_ok(),
|
||||
"wait() should either return Ok or panic");
|
||||
return Err(Error::from_raw_os_error(errno))
|
||||
}
|
||||
Ok(0) => return Ok(p),
|
||||
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
|
||||
Err(e) => {
|
||||
assert!(p.wait().is_ok(),
|
||||
"wait() should either return Ok or panic");
|
||||
panic!("the CLOEXEC pipe failed: {:?}", e)
|
||||
},
|
||||
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
|
||||
assert!(p.wait().is_ok(),
|
||||
"wait() should either return Ok or panic");
|
||||
panic!("short read on the CLOEXEC pipe")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// And at this point we've reached a special time in the life of the
|
||||
// child. The child must now be considered hamstrung and unable to
|
||||
// do anything other than syscalls really. Consider the following
|
||||
// scenario:
|
||||
//
|
||||
// 1. Thread A of process 1 grabs the malloc() mutex
|
||||
// 2. Thread B of process 1 forks(), creating thread C
|
||||
// 3. Thread C of process 2 then attempts to malloc()
|
||||
// 4. The memory of process 2 is the same as the memory of
|
||||
// process 1, so the mutex is locked.
|
||||
//
|
||||
// This situation looks a lot like deadlock, right? It turns out
|
||||
// that this is what pthread_atfork() takes care of, which is
|
||||
// presumably implemented across platforms. The first thing that
|
||||
// threads to *before* forking is to do things like grab the malloc
|
||||
// mutex, and then after the fork they unlock it.
|
||||
//
|
||||
// Despite this information, libnative's spawn has been witnessed to
|
||||
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
|
||||
// all collected backtraces point at malloc/free traffic in the
|
||||
// child spawned process.
|
||||
//
|
||||
// For this reason, the block of code below should contain 0
|
||||
// invocations of either malloc of free (or their related friends).
|
||||
//
|
||||
// As an example of not having malloc/free traffic, we don't close
|
||||
// this file descriptor by dropping the FileDesc (which contains an
|
||||
// allocation). Instead we just close it manually. This will never
|
||||
// have the drop glue anyway because this code never returns (the
|
||||
// child will either exec() or invoke libc::exit)
|
||||
let _ = libc::close(input.raw());
|
||||
|
||||
fn fail(output: &mut AnonPipe) -> ! {
|
||||
let errno = sys::os::errno() as u32;
|
||||
let bytes = [
|
||||
(errno >> 24) as u8,
|
||||
(errno >> 16) as u8,
|
||||
(errno >> 8) as u8,
|
||||
(errno >> 0) as u8,
|
||||
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
|
||||
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
|
||||
];
|
||||
// pipe I/O up to PIPE_BUF bytes should be atomic
|
||||
assert!(output.write(&bytes).is_ok());
|
||||
unsafe { libc::_exit(1) }
|
||||
}
|
||||
|
||||
rustrt::rust_unset_sigprocmask();
|
||||
|
||||
// If a stdio file descriptor is set to be ignored, we don't
|
||||
// actually close it, but rather open up /dev/null into that
|
||||
// file descriptor. Otherwise, the first file descriptor opened
|
||||
// up in the child would be numbered as one of the stdio file
|
||||
// descriptors, which is likely to wreak havoc.
|
||||
let setup = |src: Option<AnonPipe>, dst: c_int| {
|
||||
let src = match src {
|
||||
None => {
|
||||
let flags = if dst == libc::STDIN_FILENO {
|
||||
libc::O_RDONLY
|
||||
} else {
|
||||
libc::O_RDWR
|
||||
};
|
||||
libc::open(devnull.as_ptr() as *const _, flags, 0)
|
||||
}
|
||||
Some(obj) => {
|
||||
let fd = obj.raw();
|
||||
// Leak the memory and the file descriptor. We're in the
|
||||
// child now an all our resources are going to be
|
||||
// cleaned up very soon
|
||||
mem::forget(obj);
|
||||
fd
|
||||
}
|
||||
};
|
||||
src != -1 && retry(|| dup2(src, dst)) != -1
|
||||
};
|
||||
|
||||
if !setup(in_fd, libc::STDIN_FILENO) { fail(&mut output) }
|
||||
if !setup(out_fd, libc::STDOUT_FILENO) { fail(&mut output) }
|
||||
if !setup(err_fd, libc::STDERR_FILENO) { fail(&mut output) }
|
||||
|
||||
// close all other fds
|
||||
for fd in (3..getdtablesize()).rev() {
|
||||
if fd != output.raw() {
|
||||
let _ = close(fd as c_int);
|
||||
}
|
||||
}
|
||||
|
||||
match cfg.gid {
|
||||
Some(u) => {
|
||||
if libc::setgid(u as libc::gid_t) != 0 {
|
||||
fail(&mut output);
|
||||
}
|
||||
}
|
||||
None => {}
|
||||
}
|
||||
match cfg.uid {
|
||||
Some(u) => {
|
||||
// When dropping privileges from root, the `setgroups` call
|
||||
// will remove any extraneous groups. If we don't call this,
|
||||
// then even though our uid has dropped, we may still have
|
||||
// groups that enable us to do super-user things. This will
|
||||
// fail if we aren't root, so don't bother checking the
|
||||
// return value, this is just done as an optimistic
|
||||
// privilege dropping function.
|
||||
extern {
|
||||
fn setgroups(ngroups: libc::c_int,
|
||||
ptr: *const libc::c_void) -> libc::c_int;
|
||||
}
|
||||
let _ = setgroups(0, ptr::null());
|
||||
|
||||
if libc::setuid(u as libc::uid_t) != 0 {
|
||||
fail(&mut output);
|
||||
}
|
||||
}
|
||||
None => {}
|
||||
}
|
||||
if cfg.detach {
|
||||
// Don't check the error of setsid because it fails if we're the
|
||||
// process leader already. We just forked so it shouldn't return
|
||||
// error, but ignore it anyway.
|
||||
let _ = libc::setsid();
|
||||
}
|
||||
if !dirp.is_null() && chdir(dirp) == -1 {
|
||||
fail(&mut output);
|
||||
}
|
||||
if !envp.is_null() {
|
||||
*sys::os::environ() = envp as *const _;
|
||||
}
|
||||
let _ = execvp(*argv, argv as *mut _);
|
||||
if let Some(u) = cfg.gid {
|
||||
if libc::setgid(u as libc::gid_t) != 0 {
|
||||
fail(&mut output);
|
||||
})
|
||||
})
|
||||
}
|
||||
}
|
||||
if let Some(u) = cfg.uid {
|
||||
// When dropping privileges from root, the `setgroups` call
|
||||
// will remove any extraneous groups. If we don't call this,
|
||||
// then even though our uid has dropped, we may still have
|
||||
// groups that enable us to do super-user things. This will
|
||||
// fail if we aren't root, so don't bother checking the
|
||||
// return value, this is just done as an optimistic
|
||||
// privilege dropping function.
|
||||
let _ = c::setgroups(0, ptr::null());
|
||||
|
||||
if libc::setuid(u as libc::uid_t) != 0 {
|
||||
fail(&mut output);
|
||||
}
|
||||
}
|
||||
if cfg.detach {
|
||||
// Don't check the error of setsid because it fails if we're the
|
||||
// process leader already. We just forked so it shouldn't return
|
||||
// error, but ignore it anyway.
|
||||
let _ = libc::setsid();
|
||||
}
|
||||
if !dirp.is_null() && libc::chdir(dirp) == -1 {
|
||||
fail(&mut output);
|
||||
}
|
||||
if !envp.is_null() {
|
||||
*sys::os::environ() = envp as *const _;
|
||||
}
|
||||
let _ = libc::execvp(*argv, argv as *mut _);
|
||||
fail(&mut output)
|
||||
}
|
||||
|
||||
pub fn wait(&self) -> io::Result<ExitStatus> {
|
||||
@ -364,8 +321,8 @@ pub fn try_wait(&self) -> Option<ExitStatus> {
|
||||
}
|
||||
}
|
||||
|
||||
fn with_argv<T,F>(prog: &CString, args: &[CString], cb: F) -> T
|
||||
where F : FnOnce(*const *const libc::c_char) -> T
|
||||
fn make_argv(prog: &CString, args: &[CString])
|
||||
-> (*const *const libc::c_char, Vec<*const libc::c_char>)
|
||||
{
|
||||
let mut ptrs: Vec<*const libc::c_char> = Vec::with_capacity(args.len()+1);
|
||||
|
||||
@ -380,40 +337,38 @@ fn with_argv<T,F>(prog: &CString, args: &[CString], cb: F) -> T
|
||||
// Add a terminating null pointer (required by libc).
|
||||
ptrs.push(ptr::null());
|
||||
|
||||
cb(ptrs.as_ptr())
|
||||
(ptrs.as_ptr(), ptrs)
|
||||
}
|
||||
|
||||
fn with_envp<T, F>(env: Option<&HashMap<OsString, OsString>>, cb: F) -> T
|
||||
where F : FnOnce(*const c_void) -> T
|
||||
fn make_envp(env: Option<&HashMap<OsString, OsString>>)
|
||||
-> (*const c_void, Vec<Vec<u8>>, Vec<*const libc::c_char>)
|
||||
{
|
||||
// On posixy systems we can pass a char** for envp, which is a
|
||||
// null-terminated array of "k=v\0" strings. Since we must create
|
||||
// these strings locally, yet expose a raw pointer to them, we
|
||||
// create a temporary vector to own the CStrings that outlives the
|
||||
// call to cb.
|
||||
match env {
|
||||
Some(env) => {
|
||||
let mut tmps = Vec::with_capacity(env.len());
|
||||
if let Some(env) = env {
|
||||
let mut tmps = Vec::with_capacity(env.len());
|
||||
|
||||
for pair in env {
|
||||
let mut kv = Vec::new();
|
||||
kv.push_all(pair.0.as_bytes());
|
||||
kv.push('=' as u8);
|
||||
kv.push_all(pair.1.as_bytes());
|
||||
kv.push(0); // terminating null
|
||||
tmps.push(kv);
|
||||
}
|
||||
|
||||
// As with `with_argv`, this is unsafe, since cb could leak the pointers.
|
||||
let mut ptrs: Vec<*const libc::c_char> =
|
||||
tmps.iter()
|
||||
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
|
||||
.collect();
|
||||
ptrs.push(ptr::null());
|
||||
|
||||
cb(ptrs.as_ptr() as *const c_void)
|
||||
for pair in env {
|
||||
let mut kv = Vec::new();
|
||||
kv.push_all(pair.0.as_bytes());
|
||||
kv.push('=' as u8);
|
||||
kv.push_all(pair.1.as_bytes());
|
||||
kv.push(0); // terminating null
|
||||
tmps.push(kv);
|
||||
}
|
||||
_ => cb(ptr::null())
|
||||
|
||||
let mut ptrs: Vec<*const libc::c_char> =
|
||||
tmps.iter()
|
||||
.map(|tmp| tmp.as_ptr() as *const libc::c_char)
|
||||
.collect();
|
||||
ptrs.push(ptr::null());
|
||||
|
||||
(ptrs.as_ptr() as *const _, tmps, ptrs)
|
||||
} else {
|
||||
(0 as *const _, Vec::new(), Vec::new())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -22,22 +22,24 @@ pub struct AnonPipe {
|
||||
fd: c_int
|
||||
}
|
||||
|
||||
pub unsafe fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
|
||||
pub fn anon_pipe() -> io::Result<(AnonPipe, AnonPipe)> {
|
||||
// Windows pipes work subtly differently than unix pipes, and their
|
||||
// inheritance has to be handled in a different way that I do not
|
||||
// fully understand. Here we explicitly make the pipe non-inheritable,
|
||||
// which means to pass it to a subprocess they need to be duplicated
|
||||
// first, as in std::run.
|
||||
let mut fds = [0; 2];
|
||||
match libc::pipe(fds.as_mut_ptr(), 1024 as ::libc::c_uint,
|
||||
(libc::O_BINARY | libc::O_NOINHERIT) as c_int) {
|
||||
0 => {
|
||||
assert!(fds[0] != -1 && fds[0] != 0);
|
||||
assert!(fds[1] != -1 && fds[1] != 0);
|
||||
unsafe {
|
||||
match libc::pipe(fds.as_mut_ptr(), 1024 as ::libc::c_uint,
|
||||
(libc::O_BINARY | libc::O_NOINHERIT) as c_int) {
|
||||
0 => {
|
||||
assert!(fds[0] != -1 && fds[0] != 0);
|
||||
assert!(fds[1] != -1 && fds[1] != 0);
|
||||
|
||||
Ok((AnonPipe::from_fd(fds[0]), AnonPipe::from_fd(fds[1])))
|
||||
Ok((AnonPipe::from_fd(fds[0]), AnonPipe::from_fd(fds[1])))
|
||||
}
|
||||
_ => Err(io::Error::last_os_error()),
|
||||
}
|
||||
_ => Err(io::Error::last_os_error()),
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user