2223: Move expression lowering to hir_def r=matklad a=matklad



Co-authored-by: Aleksey Kladov <aleksey.kladov@gmail.com>
This commit is contained in:
bors[bot] 2019-11-12 15:53:55 +00:00 committed by GitHub
commit 3322d65add
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 765 additions and 732 deletions

View File

@ -113,10 +113,10 @@ fn generic_predicates_for_param(
#[salsa::invoke(crate::ty::generic_defaults_query)]
fn generic_defaults(&self, def: GenericDef) -> Substs;
#[salsa::invoke(Body::body_with_source_map_query)]
#[salsa::invoke(crate::expr::body_with_source_map_query)]
fn body_with_source_map(&self, def: DefWithBody) -> (Arc<Body>, Arc<BodySourceMap>);
#[salsa::invoke(Body::body_query)]
#[salsa::invoke(crate::expr::body_query)]
fn body(&self, def: DefWithBody) -> Arc<Body>;
#[salsa::invoke(crate::ty::method_resolution::CrateImplBlocks::impls_in_crate_query)]

View File

@ -1,71 +1,28 @@
//! FIXME: write short doc here
pub(crate) mod lower;
pub(crate) mod scope;
pub(crate) mod validation;
use std::{ops::Index, sync::Arc};
use std::sync::Arc;
use ra_arena::{map::ArenaMap, Arena};
use ra_syntax::{ast, AstPtr};
use rustc_hash::FxHashMap;
use crate::{db::HirDatabase, DefWithBody, Either, HasSource, Resolver, Source};
use crate::{db::HirDatabase, DefWithBody, HasSource, Resolver};
pub use self::scope::ExprScopes;
pub use hir_def::expr::{
ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp, MatchArm,
Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement, UnaryOp,
pub use hir_def::{
body::{Body, BodySourceMap, ExprPtr, ExprSource, PatPtr, PatSource},
expr::{
ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp,
MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement, UnaryOp,
},
};
/// The body of an item (function, const etc.).
#[derive(Debug, Eq, PartialEq)]
pub struct Body {
exprs: Arena<ExprId, Expr>,
pats: Arena<PatId, Pat>,
/// The patterns for the function's parameters. While the parameter types are
/// part of the function signature, the patterns are not (they don't change
/// the external type of the function).
///
/// If this `Body` is for the body of a constant, this will just be
/// empty.
params: Vec<PatId>,
/// The `ExprId` of the actual body expression.
body_expr: ExprId,
}
type ExprPtr = Either<AstPtr<ast::Expr>, AstPtr<ast::RecordField>>;
type ExprSource = Source<ExprPtr>;
type PatPtr = Either<AstPtr<ast::Pat>, AstPtr<ast::SelfParam>>;
type PatSource = Source<PatPtr>;
/// An item body together with the mapping from syntax nodes to HIR expression
/// IDs. This is needed to go from e.g. a position in a file to the HIR
/// expression containing it; but for type inference etc., we want to operate on
/// a structure that is agnostic to the actual positions of expressions in the
/// file, so that we don't recompute types whenever some whitespace is typed.
///
/// One complication here is that, due to macro expansion, a single `Body` might
/// be spread across several files. So, for each ExprId and PatId, we record
/// both the HirFileId and the position inside the file. However, we only store
/// AST -> ExprId mapping for non-macro files, as it is not clear how to handle
/// this properly for macros.
#[derive(Default, Debug, Eq, PartialEq)]
pub struct BodySourceMap {
expr_map: FxHashMap<ExprPtr, ExprId>,
expr_map_back: ArenaMap<ExprId, ExprSource>,
pat_map: FxHashMap<PatPtr, PatId>,
pat_map_back: ArenaMap<PatId, PatSource>,
field_map: FxHashMap<(ExprId, usize), AstPtr<ast::RecordField>>,
}
impl Body {
pub(crate) fn body_with_source_map_query(
pub(crate) fn body_with_source_map_query(
db: &impl HirDatabase,
def: DefWithBody,
) -> (Arc<Body>, Arc<BodySourceMap>) {
) -> (Arc<Body>, Arc<BodySourceMap>) {
let mut params = None;
let (file_id, body) = match def {
@ -83,30 +40,13 @@ pub(crate) fn body_with_source_map_query(
(src.file_id, src.ast.body())
}
};
let (body, source_map) = lower::lower(db, def.resolver(db), file_id, params, body);
let resolver = hir_def::body::MacroResolver::new(db, def.module(db).id);
let (body, source_map) = Body::new(db, resolver, file_id, params, body);
(Arc::new(body), Arc::new(source_map))
}
}
pub(crate) fn body_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<Body> {
pub(crate) fn body_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<Body> {
db.body_with_source_map(def).0
}
pub fn params(&self) -> &[PatId] {
&self.params
}
pub fn body_expr(&self) -> ExprId {
self.body_expr
}
pub fn exprs(&self) -> impl Iterator<Item = (ExprId, &Expr)> {
self.exprs.iter()
}
pub fn pats(&self) -> impl Iterator<Item = (PatId, &Pat)> {
self.pats.iter()
}
}
// needs arbitrary_self_types to be a method... or maybe move to the def?
@ -132,41 +72,3 @@ pub(crate) fn resolver_for_scope(
}
r
}
impl Index<ExprId> for Body {
type Output = Expr;
fn index(&self, expr: ExprId) -> &Expr {
&self.exprs[expr]
}
}
impl Index<PatId> for Body {
type Output = Pat;
fn index(&self, pat: PatId) -> &Pat {
&self.pats[pat]
}
}
impl BodySourceMap {
pub(crate) fn expr_syntax(&self, expr: ExprId) -> Option<ExprSource> {
self.expr_map_back.get(expr).copied()
}
pub(crate) fn node_expr(&self, node: &ast::Expr) -> Option<ExprId> {
self.expr_map.get(&Either::A(AstPtr::new(node))).cloned()
}
pub(crate) fn pat_syntax(&self, pat: PatId) -> Option<PatSource> {
self.pat_map_back.get(pat).copied()
}
pub(crate) fn node_pat(&self, node: &ast::Pat) -> Option<PatId> {
self.pat_map.get(&Either::A(AstPtr::new(node))).cloned()
}
pub(crate) fn field_syntax(&self, expr: ExprId, field: usize) -> AstPtr<ast::RecordField> {
self.field_map[&(expr, field)]
}
}

View File

@ -1,593 +0,0 @@
//! FIXME: write short doc here
use hir_def::{
builtin_type::{BuiltinFloat, BuiltinInt},
path::GenericArgs,
type_ref::TypeRef,
};
use hir_expand::{
hygiene::Hygiene,
name::{self, AsName, Name},
};
use ra_arena::Arena;
use ra_syntax::{
ast::{
self, ArgListOwner, ArrayExprKind, LiteralKind, LoopBodyOwner, NameOwner,
TypeAscriptionOwner,
},
AstNode, AstPtr,
};
use test_utils::tested_by;
use crate::{
db::HirDatabase, AstId, Either, HirFileId, MacroCallLoc, MacroFileKind, Mutability, Path,
Resolver, Source,
};
use super::{
Array, BinaryOp, BindingAnnotation, Body, BodySourceMap, Expr, ExprId, Literal, MatchArm, Pat,
PatId, PatPtr, RecordFieldPat, RecordLitField, Statement,
};
pub(super) fn lower(
db: &impl HirDatabase,
resolver: Resolver,
file_id: HirFileId,
params: Option<ast::ParamList>,
body: Option<ast::Expr>,
) -> (Body, BodySourceMap) {
ExprCollector {
resolver,
db,
original_file_id: file_id,
current_file_id: file_id,
source_map: BodySourceMap::default(),
body: Body {
exprs: Arena::default(),
pats: Arena::default(),
params: Vec::new(),
body_expr: ExprId::dummy(),
},
}
.collect(params, body)
}
struct ExprCollector<DB> {
db: DB,
resolver: Resolver,
// Expr collector expands macros along the way. original points to the file
// we started with, current points to the current macro expansion. source
// maps don't support macros yet, so we only record info into source map if
// current == original (see #1196)
original_file_id: HirFileId,
current_file_id: HirFileId,
body: Body,
source_map: BodySourceMap,
}
impl<'a, DB> ExprCollector<&'a DB>
where
DB: HirDatabase,
{
fn collect(
mut self,
param_list: Option<ast::ParamList>,
body: Option<ast::Expr>,
) -> (Body, BodySourceMap) {
if let Some(param_list) = param_list {
if let Some(self_param) = param_list.self_param() {
let ptr = AstPtr::new(&self_param);
let param_pat = self.alloc_pat(
Pat::Bind {
name: name::SELF_PARAM,
mode: BindingAnnotation::Unannotated,
subpat: None,
},
Either::B(ptr),
);
self.body.params.push(param_pat);
}
for param in param_list.params() {
let pat = match param.pat() {
None => continue,
Some(pat) => pat,
};
let param_pat = self.collect_pat(pat);
self.body.params.push(param_pat);
}
};
self.body.body_expr = self.collect_expr_opt(body);
(self.body, self.source_map)
}
fn alloc_expr(&mut self, expr: Expr, ptr: AstPtr<ast::Expr>) -> ExprId {
let ptr = Either::A(ptr);
let id = self.body.exprs.alloc(expr);
if self.current_file_id == self.original_file_id {
self.source_map.expr_map.insert(ptr, id);
}
self.source_map
.expr_map_back
.insert(id, Source { file_id: self.current_file_id, ast: ptr });
id
}
// desugared exprs don't have ptr, that's wrong and should be fixed
// somehow.
fn alloc_expr_desugared(&mut self, expr: Expr) -> ExprId {
self.body.exprs.alloc(expr)
}
fn alloc_expr_field_shorthand(&mut self, expr: Expr, ptr: AstPtr<ast::RecordField>) -> ExprId {
let ptr = Either::B(ptr);
let id = self.body.exprs.alloc(expr);
if self.current_file_id == self.original_file_id {
self.source_map.expr_map.insert(ptr, id);
}
self.source_map
.expr_map_back
.insert(id, Source { file_id: self.current_file_id, ast: ptr });
id
}
fn alloc_pat(&mut self, pat: Pat, ptr: PatPtr) -> PatId {
let id = self.body.pats.alloc(pat);
if self.current_file_id == self.original_file_id {
self.source_map.pat_map.insert(ptr, id);
}
self.source_map.pat_map_back.insert(id, Source { file_id: self.current_file_id, ast: ptr });
id
}
fn empty_block(&mut self) -> ExprId {
let block = Expr::Block { statements: Vec::new(), tail: None };
self.body.exprs.alloc(block)
}
fn missing_expr(&mut self) -> ExprId {
self.body.exprs.alloc(Expr::Missing)
}
fn missing_pat(&mut self) -> PatId {
self.body.pats.alloc(Pat::Missing)
}
fn collect_expr(&mut self, expr: ast::Expr) -> ExprId {
let syntax_ptr = AstPtr::new(&expr);
match expr {
ast::Expr::IfExpr(e) => {
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e.else_branch().map(|b| match b {
ast::ElseBranch::Block(it) => self.collect_block(it),
ast::ElseBranch::IfExpr(elif) => {
let expr: ast::Expr = ast::Expr::cast(elif.syntax().clone()).unwrap();
self.collect_expr(expr)
}
});
let condition = match e.condition() {
None => self.missing_expr(),
Some(condition) => match condition.pat() {
None => self.collect_expr_opt(condition.expr()),
// if let -- desugar to match
Some(pat) => {
let pat = self.collect_pat(pat);
let match_expr = self.collect_expr_opt(condition.expr());
let placeholder_pat = self.missing_pat();
let arms = vec![
MatchArm { pats: vec![pat], expr: then_branch, guard: None },
MatchArm {
pats: vec![placeholder_pat],
expr: else_branch.unwrap_or_else(|| self.empty_block()),
guard: None,
},
];
return self
.alloc_expr(Expr::Match { expr: match_expr, arms }, syntax_ptr);
}
},
};
self.alloc_expr(Expr::If { condition, then_branch, else_branch }, syntax_ptr)
}
ast::Expr::TryBlockExpr(e) => {
let body = self.collect_block_opt(e.body());
self.alloc_expr(Expr::TryBlock { body }, syntax_ptr)
}
ast::Expr::BlockExpr(e) => self.collect_block(e),
ast::Expr::LoopExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::Loop { body }, syntax_ptr)
}
ast::Expr::WhileExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
let condition = match e.condition() {
None => self.missing_expr(),
Some(condition) => match condition.pat() {
None => self.collect_expr_opt(condition.expr()),
// if let -- desugar to match
Some(pat) => {
tested_by!(infer_while_let);
let pat = self.collect_pat(pat);
let match_expr = self.collect_expr_opt(condition.expr());
let placeholder_pat = self.missing_pat();
let break_ = self.alloc_expr_desugared(Expr::Break { expr: None });
let arms = vec![
MatchArm { pats: vec![pat], expr: body, guard: None },
MatchArm { pats: vec![placeholder_pat], expr: break_, guard: None },
];
let match_expr =
self.alloc_expr_desugared(Expr::Match { expr: match_expr, arms });
return self.alloc_expr(Expr::Loop { body: match_expr }, syntax_ptr);
}
},
};
self.alloc_expr(Expr::While { condition, body }, syntax_ptr)
}
ast::Expr::ForExpr(e) => {
let iterable = self.collect_expr_opt(e.iterable());
let pat = self.collect_pat_opt(e.pat());
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::For { iterable, pat, body }, syntax_ptr)
}
ast::Expr::CallExpr(e) => {
let callee = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Call { callee, args }, syntax_ptr)
}
ast::Expr::MethodCallExpr(e) => {
let receiver = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
let method_name = e.name_ref().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let generic_args = e.type_arg_list().and_then(GenericArgs::from_ast);
self.alloc_expr(
Expr::MethodCall { receiver, method_name, args, generic_args },
syntax_ptr,
)
}
ast::Expr::MatchExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let arms = if let Some(match_arm_list) = e.match_arm_list() {
match_arm_list
.arms()
.map(|arm| MatchArm {
pats: arm.pats().map(|p| self.collect_pat(p)).collect(),
expr: self.collect_expr_opt(arm.expr()),
guard: arm
.guard()
.and_then(|guard| guard.expr())
.map(|e| self.collect_expr(e)),
})
.collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
}
ast::Expr::PathExpr(e) => {
let path = e
.path()
.and_then(|path| self.parse_path(path))
.map(Expr::Path)
.unwrap_or(Expr::Missing);
self.alloc_expr(path, syntax_ptr)
}
ast::Expr::ContinueExpr(_e) => {
// FIXME: labels
self.alloc_expr(Expr::Continue, syntax_ptr)
}
ast::Expr::BreakExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Break { expr }, syntax_ptr)
}
ast::Expr::ParenExpr(e) => {
let inner = self.collect_expr_opt(e.expr());
// make the paren expr point to the inner expression as well
self.source_map.expr_map.insert(Either::A(syntax_ptr), inner);
inner
}
ast::Expr::ReturnExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Return { expr }, syntax_ptr)
}
ast::Expr::RecordLit(e) => {
let path = e.path().and_then(|path| self.parse_path(path));
let mut field_ptrs = Vec::new();
let record_lit = if let Some(nfl) = e.record_field_list() {
let fields = nfl
.fields()
.inspect(|field| field_ptrs.push(AstPtr::new(field)))
.map(|field| RecordLitField {
name: field
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing),
expr: if let Some(e) = field.expr() {
self.collect_expr(e)
} else if let Some(nr) = field.name_ref() {
// field shorthand
self.alloc_expr_field_shorthand(
Expr::Path(Path::from_name_ref(&nr)),
AstPtr::new(&field),
)
} else {
self.missing_expr()
},
})
.collect();
let spread = nfl.spread().map(|s| self.collect_expr(s));
Expr::RecordLit { path, fields, spread }
} else {
Expr::RecordLit { path, fields: Vec::new(), spread: None }
};
let res = self.alloc_expr(record_lit, syntax_ptr);
for (i, ptr) in field_ptrs.into_iter().enumerate() {
self.source_map.field_map.insert((res, i), ptr);
}
res
}
ast::Expr::FieldExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let name = match e.field_access() {
Some(kind) => kind.as_name(),
_ => Name::missing(),
};
self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
}
ast::Expr::AwaitExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Await { expr }, syntax_ptr)
}
ast::Expr::TryExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Try { expr }, syntax_ptr)
}
ast::Expr::CastExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let type_ref = TypeRef::from_ast_opt(e.type_ref());
self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
}
ast::Expr::RefExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let mutability = Mutability::from_mutable(e.is_mut());
self.alloc_expr(Expr::Ref { expr, mutability }, syntax_ptr)
}
ast::Expr::PrefixExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
if let Some(op) = e.op_kind() {
self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr)
} else {
self.alloc_expr(Expr::Missing, syntax_ptr)
}
}
ast::Expr::LambdaExpr(e) => {
let mut args = Vec::new();
let mut arg_types = Vec::new();
if let Some(pl) = e.param_list() {
for param in pl.params() {
let pat = self.collect_pat_opt(param.pat());
let type_ref = param.ascribed_type().map(TypeRef::from_ast);
args.push(pat);
arg_types.push(type_ref);
}
}
let body = self.collect_expr_opt(e.body());
self.alloc_expr(Expr::Lambda { args, arg_types, body }, syntax_ptr)
}
ast::Expr::BinExpr(e) => {
let lhs = self.collect_expr_opt(e.lhs());
let rhs = self.collect_expr_opt(e.rhs());
let op = e.op_kind().map(BinaryOp::from);
self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
}
ast::Expr::TupleExpr(e) => {
let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Tuple { exprs }, syntax_ptr)
}
ast::Expr::BoxExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Box { expr }, syntax_ptr)
}
ast::Expr::ArrayExpr(e) => {
let kind = e.kind();
match kind {
ArrayExprKind::ElementList(e) => {
let exprs = e.map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Array(Array::ElementList(exprs)), syntax_ptr)
}
ArrayExprKind::Repeat { initializer, repeat } => {
let initializer = self.collect_expr_opt(initializer);
let repeat = self.collect_expr_opt(repeat);
self.alloc_expr(
Expr::Array(Array::Repeat { initializer, repeat }),
syntax_ptr,
)
}
}
}
ast::Expr::Literal(e) => {
let lit = match e.kind() {
LiteralKind::IntNumber { suffix } => {
let known_name = suffix.and_then(|it| BuiltinInt::from_suffix(&it));
Literal::Int(Default::default(), known_name)
}
LiteralKind::FloatNumber { suffix } => {
let known_name = suffix.and_then(|it| BuiltinFloat::from_suffix(&it));
Literal::Float(Default::default(), known_name)
}
LiteralKind::ByteString => Literal::ByteString(Default::default()),
LiteralKind::String => Literal::String(Default::default()),
LiteralKind::Byte => Literal::Int(Default::default(), Some(BuiltinInt::U8)),
LiteralKind::Bool => Literal::Bool(Default::default()),
LiteralKind::Char => Literal::Char(Default::default()),
};
self.alloc_expr(Expr::Literal(lit), syntax_ptr)
}
ast::Expr::IndexExpr(e) => {
let base = self.collect_expr_opt(e.base());
let index = self.collect_expr_opt(e.index());
self.alloc_expr(Expr::Index { base, index }, syntax_ptr)
}
// FIXME implement HIR for these:
ast::Expr::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::Expr::RangeExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::Expr::MacroCall(e) => {
let ast_id = AstId::new(
self.current_file_id,
self.db.ast_id_map(self.current_file_id).ast_id(&e),
);
if let Some(path) = e.path().and_then(|path| self.parse_path(path)) {
if let Some(def) = self.resolver.resolve_path_as_macro(self.db, &path) {
let call_id = self.db.intern_macro(MacroCallLoc { def: def.id, ast_id });
let file_id = call_id.as_file(MacroFileKind::Expr);
if let Some(node) = self.db.parse_or_expand(file_id) {
if let Some(expr) = ast::Expr::cast(node) {
log::debug!("macro expansion {:#?}", expr.syntax());
let old_file_id =
std::mem::replace(&mut self.current_file_id, file_id);
let id = self.collect_expr(expr);
self.current_file_id = old_file_id;
return id;
}
}
}
}
// FIXME: Instead of just dropping the error from expansion
// report it
self.alloc_expr(Expr::Missing, syntax_ptr)
}
}
}
fn collect_expr_opt(&mut self, expr: Option<ast::Expr>) -> ExprId {
if let Some(expr) = expr {
self.collect_expr(expr)
} else {
self.missing_expr()
}
}
fn collect_block(&mut self, expr: ast::BlockExpr) -> ExprId {
let syntax_node_ptr = AstPtr::new(&expr.clone().into());
let block = match expr.block() {
Some(block) => block,
None => return self.alloc_expr(Expr::Missing, syntax_node_ptr),
};
let statements = block
.statements()
.map(|s| match s {
ast::Stmt::LetStmt(stmt) => {
let pat = self.collect_pat_opt(stmt.pat());
let type_ref = stmt.ascribed_type().map(TypeRef::from_ast);
let initializer = stmt.initializer().map(|e| self.collect_expr(e));
Statement::Let { pat, type_ref, initializer }
}
ast::Stmt::ExprStmt(stmt) => Statement::Expr(self.collect_expr_opt(stmt.expr())),
})
.collect();
let tail = block.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Block { statements, tail }, syntax_node_ptr)
}
fn collect_block_opt(&mut self, expr: Option<ast::BlockExpr>) -> ExprId {
if let Some(block) = expr {
self.collect_block(block)
} else {
self.missing_expr()
}
}
fn collect_pat(&mut self, pat: ast::Pat) -> PatId {
let pattern = match &pat {
ast::Pat::BindPat(bp) => {
let name = bp.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let annotation = BindingAnnotation::new(bp.is_mutable(), bp.is_ref());
let subpat = bp.pat().map(|subpat| self.collect_pat(subpat));
Pat::Bind { name, mode: annotation, subpat }
}
ast::Pat::TupleStructPat(p) => {
let path = p.path().and_then(|path| self.parse_path(path));
let args = p.args().map(|p| self.collect_pat(p)).collect();
Pat::TupleStruct { path, args }
}
ast::Pat::RefPat(p) => {
let pat = self.collect_pat_opt(p.pat());
let mutability = Mutability::from_mutable(p.is_mut());
Pat::Ref { pat, mutability }
}
ast::Pat::PathPat(p) => {
let path = p.path().and_then(|path| self.parse_path(path));
path.map(Pat::Path).unwrap_or(Pat::Missing)
}
ast::Pat::TuplePat(p) => {
let args = p.args().map(|p| self.collect_pat(p)).collect();
Pat::Tuple(args)
}
ast::Pat::PlaceholderPat(_) => Pat::Wild,
ast::Pat::RecordPat(p) => {
let path = p.path().and_then(|path| self.parse_path(path));
let record_field_pat_list =
p.record_field_pat_list().expect("every struct should have a field list");
let mut fields: Vec<_> = record_field_pat_list
.bind_pats()
.filter_map(|bind_pat| {
let ast_pat =
ast::Pat::cast(bind_pat.syntax().clone()).expect("bind pat is a pat");
let pat = self.collect_pat(ast_pat);
let name = bind_pat.name()?.as_name();
Some(RecordFieldPat { name, pat })
})
.collect();
let iter = record_field_pat_list.record_field_pats().filter_map(|f| {
let ast_pat = f.pat()?;
let pat = self.collect_pat(ast_pat);
let name = f.name()?.as_name();
Some(RecordFieldPat { name, pat })
});
fields.extend(iter);
Pat::Record { path, args: fields }
}
// FIXME: implement
ast::Pat::DotDotPat(_) => Pat::Missing,
ast::Pat::BoxPat(_) => Pat::Missing,
ast::Pat::LiteralPat(_) => Pat::Missing,
ast::Pat::SlicePat(_) | ast::Pat::RangePat(_) => Pat::Missing,
};
let ptr = AstPtr::new(&pat);
self.alloc_pat(pattern, Either::A(ptr))
}
fn collect_pat_opt(&mut self, pat: Option<ast::Pat>) -> PatId {
if let Some(pat) = pat {
self.collect_pat(pat)
} else {
self.missing_pat()
}
}
fn parse_path(&mut self, path: ast::Path) -> Option<Path> {
let hygiene = Hygiene::new(self.db, self.current_file_id);
Path::from_src(path, &hygiene)
}
}

View File

@ -5,6 +5,5 @@
type_var_cycles_resolve_as_possible
type_var_resolves_to_int_var
match_ergonomics_ref
infer_while_let
coerce_merge_fail_fallback
);

View File

@ -222,7 +222,6 @@ impl<T> crate::iter::IntoIterator for Vec<T> {
#[test]
fn infer_while_let() {
covers!(infer_while_let);
let (db, pos) = TestDB::with_position(
r#"
//- /main.rs

View File

@ -1,2 +1,144 @@
//! FIXME: write short doc here
mod lower;
use std::{ops::Index, sync::Arc};
use hir_expand::{either::Either, HirFileId, MacroDefId, Source};
use ra_arena::{map::ArenaMap, Arena};
use ra_syntax::{ast, AstPtr};
use rustc_hash::FxHashMap;
use crate::{
db::DefDatabase2,
expr::{Expr, ExprId, Pat, PatId},
nameres::CrateDefMap,
path::Path,
ModuleId,
};
pub struct MacroResolver {
crate_def_map: Arc<CrateDefMap>,
module: ModuleId,
}
impl MacroResolver {
pub fn new(db: &impl DefDatabase2, module: ModuleId) -> MacroResolver {
MacroResolver { crate_def_map: db.crate_def_map(module.krate), module }
}
pub(crate) fn resolve_path_as_macro(
&self,
db: &impl DefDatabase2,
path: &Path,
) -> Option<MacroDefId> {
self.crate_def_map.resolve_path(db, self.module.module_id, path).0.get_macros()
}
}
/// The body of an item (function, const etc.).
#[derive(Debug, Eq, PartialEq)]
pub struct Body {
exprs: Arena<ExprId, Expr>,
pats: Arena<PatId, Pat>,
/// The patterns for the function's parameters. While the parameter types are
/// part of the function signature, the patterns are not (they don't change
/// the external type of the function).
///
/// If this `Body` is for the body of a constant, this will just be
/// empty.
params: Vec<PatId>,
/// The `ExprId` of the actual body expression.
body_expr: ExprId,
}
pub type ExprPtr = Either<AstPtr<ast::Expr>, AstPtr<ast::RecordField>>;
pub type ExprSource = Source<ExprPtr>;
pub type PatPtr = Either<AstPtr<ast::Pat>, AstPtr<ast::SelfParam>>;
pub type PatSource = Source<PatPtr>;
/// An item body together with the mapping from syntax nodes to HIR expression
/// IDs. This is needed to go from e.g. a position in a file to the HIR
/// expression containing it; but for type inference etc., we want to operate on
/// a structure that is agnostic to the actual positions of expressions in the
/// file, so that we don't recompute types whenever some whitespace is typed.
///
/// One complication here is that, due to macro expansion, a single `Body` might
/// be spread across several files. So, for each ExprId and PatId, we record
/// both the HirFileId and the position inside the file. However, we only store
/// AST -> ExprId mapping for non-macro files, as it is not clear how to handle
/// this properly for macros.
#[derive(Default, Debug, Eq, PartialEq)]
pub struct BodySourceMap {
expr_map: FxHashMap<ExprPtr, ExprId>,
expr_map_back: ArenaMap<ExprId, ExprSource>,
pat_map: FxHashMap<PatPtr, PatId>,
pat_map_back: ArenaMap<PatId, PatSource>,
field_map: FxHashMap<(ExprId, usize), AstPtr<ast::RecordField>>,
}
impl Body {
pub fn new(
db: &impl DefDatabase2,
resolver: MacroResolver,
file_id: HirFileId,
params: Option<ast::ParamList>,
body: Option<ast::Expr>,
) -> (Body, BodySourceMap) {
lower::lower(db, resolver, file_id, params, body)
}
pub fn params(&self) -> &[PatId] {
&self.params
}
pub fn body_expr(&self) -> ExprId {
self.body_expr
}
pub fn exprs(&self) -> impl Iterator<Item = (ExprId, &Expr)> {
self.exprs.iter()
}
pub fn pats(&self) -> impl Iterator<Item = (PatId, &Pat)> {
self.pats.iter()
}
}
impl Index<ExprId> for Body {
type Output = Expr;
fn index(&self, expr: ExprId) -> &Expr {
&self.exprs[expr]
}
}
impl Index<PatId> for Body {
type Output = Pat;
fn index(&self, pat: PatId) -> &Pat {
&self.pats[pat]
}
}
impl BodySourceMap {
pub fn expr_syntax(&self, expr: ExprId) -> Option<ExprSource> {
self.expr_map_back.get(expr).copied()
}
pub fn node_expr(&self, node: &ast::Expr) -> Option<ExprId> {
self.expr_map.get(&Either::A(AstPtr::new(node))).cloned()
}
pub fn pat_syntax(&self, pat: PatId) -> Option<PatSource> {
self.pat_map_back.get(pat).copied()
}
pub fn node_pat(&self, node: &ast::Pat) -> Option<PatId> {
self.pat_map.get(&Either::A(AstPtr::new(node))).cloned()
}
pub fn field_syntax(&self, expr: ExprId, field: usize) -> AstPtr<ast::RecordField> {
self.field_map[&(expr, field)]
}
}

View File

@ -1,8 +1,590 @@
//! FIXME: write short doc here
use ra_syntax::ast;
use hir_expand::{
either::Either,
hygiene::Hygiene,
name::{self, AsName, Name},
AstId, HirFileId, MacroCallLoc, MacroFileKind, Source,
};
use ra_arena::Arena;
use ra_syntax::{
ast::{
self, ArgListOwner, ArrayExprKind, LiteralKind, LoopBodyOwner, NameOwner,
TypeAscriptionOwner,
},
AstNode, AstPtr,
};
use crate::expr::{ArithOp, BinaryOp, CmpOp, LogicOp, Ordering};
use crate::{
body::{Body, BodySourceMap, MacroResolver, PatPtr},
builtin_type::{BuiltinFloat, BuiltinInt},
db::DefDatabase2,
expr::{
ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal, LogicOp,
MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement,
},
path::GenericArgs,
path::Path,
type_ref::{Mutability, TypeRef},
};
pub(super) fn lower(
db: &impl DefDatabase2,
resolver: MacroResolver,
file_id: HirFileId,
params: Option<ast::ParamList>,
body: Option<ast::Expr>,
) -> (Body, BodySourceMap) {
ExprCollector {
resolver,
db,
original_file_id: file_id,
current_file_id: file_id,
source_map: BodySourceMap::default(),
body: Body {
exprs: Arena::default(),
pats: Arena::default(),
params: Vec::new(),
body_expr: ExprId::dummy(),
},
}
.collect(params, body)
}
struct ExprCollector<DB> {
db: DB,
resolver: MacroResolver,
original_file_id: HirFileId,
current_file_id: HirFileId,
body: Body,
source_map: BodySourceMap,
}
impl<'a, DB> ExprCollector<&'a DB>
where
DB: DefDatabase2,
{
fn collect(
mut self,
param_list: Option<ast::ParamList>,
body: Option<ast::Expr>,
) -> (Body, BodySourceMap) {
if let Some(param_list) = param_list {
if let Some(self_param) = param_list.self_param() {
let ptr = AstPtr::new(&self_param);
let param_pat = self.alloc_pat(
Pat::Bind {
name: name::SELF_PARAM,
mode: BindingAnnotation::Unannotated,
subpat: None,
},
Either::B(ptr),
);
self.body.params.push(param_pat);
}
for param in param_list.params() {
let pat = match param.pat() {
None => continue,
Some(pat) => pat,
};
let param_pat = self.collect_pat(pat);
self.body.params.push(param_pat);
}
};
self.body.body_expr = self.collect_expr_opt(body);
(self.body, self.source_map)
}
fn alloc_expr(&mut self, expr: Expr, ptr: AstPtr<ast::Expr>) -> ExprId {
let ptr = Either::A(ptr);
let id = self.body.exprs.alloc(expr);
if self.current_file_id == self.original_file_id {
self.source_map.expr_map.insert(ptr, id);
}
self.source_map
.expr_map_back
.insert(id, Source { file_id: self.current_file_id, ast: ptr });
id
}
// desugared exprs don't have ptr, that's wrong and should be fixed
// somehow.
fn alloc_expr_desugared(&mut self, expr: Expr) -> ExprId {
self.body.exprs.alloc(expr)
}
fn alloc_expr_field_shorthand(&mut self, expr: Expr, ptr: AstPtr<ast::RecordField>) -> ExprId {
let ptr = Either::B(ptr);
let id = self.body.exprs.alloc(expr);
if self.current_file_id == self.original_file_id {
self.source_map.expr_map.insert(ptr, id);
}
self.source_map
.expr_map_back
.insert(id, Source { file_id: self.current_file_id, ast: ptr });
id
}
fn alloc_pat(&mut self, pat: Pat, ptr: PatPtr) -> PatId {
let id = self.body.pats.alloc(pat);
if self.current_file_id == self.original_file_id {
self.source_map.pat_map.insert(ptr, id);
}
self.source_map.pat_map_back.insert(id, Source { file_id: self.current_file_id, ast: ptr });
id
}
fn empty_block(&mut self) -> ExprId {
let block = Expr::Block { statements: Vec::new(), tail: None };
self.body.exprs.alloc(block)
}
fn missing_expr(&mut self) -> ExprId {
self.body.exprs.alloc(Expr::Missing)
}
fn missing_pat(&mut self) -> PatId {
self.body.pats.alloc(Pat::Missing)
}
fn collect_expr(&mut self, expr: ast::Expr) -> ExprId {
let syntax_ptr = AstPtr::new(&expr);
match expr {
ast::Expr::IfExpr(e) => {
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e.else_branch().map(|b| match b {
ast::ElseBranch::Block(it) => self.collect_block(it),
ast::ElseBranch::IfExpr(elif) => {
let expr: ast::Expr = ast::Expr::cast(elif.syntax().clone()).unwrap();
self.collect_expr(expr)
}
});
let condition = match e.condition() {
None => self.missing_expr(),
Some(condition) => match condition.pat() {
None => self.collect_expr_opt(condition.expr()),
// if let -- desugar to match
Some(pat) => {
let pat = self.collect_pat(pat);
let match_expr = self.collect_expr_opt(condition.expr());
let placeholder_pat = self.missing_pat();
let arms = vec![
MatchArm { pats: vec![pat], expr: then_branch, guard: None },
MatchArm {
pats: vec![placeholder_pat],
expr: else_branch.unwrap_or_else(|| self.empty_block()),
guard: None,
},
];
return self
.alloc_expr(Expr::Match { expr: match_expr, arms }, syntax_ptr);
}
},
};
self.alloc_expr(Expr::If { condition, then_branch, else_branch }, syntax_ptr)
}
ast::Expr::TryBlockExpr(e) => {
let body = self.collect_block_opt(e.body());
self.alloc_expr(Expr::TryBlock { body }, syntax_ptr)
}
ast::Expr::BlockExpr(e) => self.collect_block(e),
ast::Expr::LoopExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::Loop { body }, syntax_ptr)
}
ast::Expr::WhileExpr(e) => {
let body = self.collect_block_opt(e.loop_body());
let condition = match e.condition() {
None => self.missing_expr(),
Some(condition) => match condition.pat() {
None => self.collect_expr_opt(condition.expr()),
// if let -- desugar to match
Some(pat) => {
let pat = self.collect_pat(pat);
let match_expr = self.collect_expr_opt(condition.expr());
let placeholder_pat = self.missing_pat();
let break_ = self.alloc_expr_desugared(Expr::Break { expr: None });
let arms = vec![
MatchArm { pats: vec![pat], expr: body, guard: None },
MatchArm { pats: vec![placeholder_pat], expr: break_, guard: None },
];
let match_expr =
self.alloc_expr_desugared(Expr::Match { expr: match_expr, arms });
return self.alloc_expr(Expr::Loop { body: match_expr }, syntax_ptr);
}
},
};
self.alloc_expr(Expr::While { condition, body }, syntax_ptr)
}
ast::Expr::ForExpr(e) => {
let iterable = self.collect_expr_opt(e.iterable());
let pat = self.collect_pat_opt(e.pat());
let body = self.collect_block_opt(e.loop_body());
self.alloc_expr(Expr::For { iterable, pat, body }, syntax_ptr)
}
ast::Expr::CallExpr(e) => {
let callee = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Call { callee, args }, syntax_ptr)
}
ast::Expr::MethodCallExpr(e) => {
let receiver = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().map(|e| self.collect_expr(e)).collect()
} else {
Vec::new()
};
let method_name = e.name_ref().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let generic_args = e.type_arg_list().and_then(GenericArgs::from_ast);
self.alloc_expr(
Expr::MethodCall { receiver, method_name, args, generic_args },
syntax_ptr,
)
}
ast::Expr::MatchExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let arms = if let Some(match_arm_list) = e.match_arm_list() {
match_arm_list
.arms()
.map(|arm| MatchArm {
pats: arm.pats().map(|p| self.collect_pat(p)).collect(),
expr: self.collect_expr_opt(arm.expr()),
guard: arm
.guard()
.and_then(|guard| guard.expr())
.map(|e| self.collect_expr(e)),
})
.collect()
} else {
Vec::new()
};
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
}
ast::Expr::PathExpr(e) => {
let path = e
.path()
.and_then(|path| self.parse_path(path))
.map(Expr::Path)
.unwrap_or(Expr::Missing);
self.alloc_expr(path, syntax_ptr)
}
ast::Expr::ContinueExpr(_e) => {
// FIXME: labels
self.alloc_expr(Expr::Continue, syntax_ptr)
}
ast::Expr::BreakExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Break { expr }, syntax_ptr)
}
ast::Expr::ParenExpr(e) => {
let inner = self.collect_expr_opt(e.expr());
// make the paren expr point to the inner expression as well
self.source_map.expr_map.insert(Either::A(syntax_ptr), inner);
inner
}
ast::Expr::ReturnExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Return { expr }, syntax_ptr)
}
ast::Expr::RecordLit(e) => {
let path = e.path().and_then(|path| self.parse_path(path));
let mut field_ptrs = Vec::new();
let record_lit = if let Some(nfl) = e.record_field_list() {
let fields = nfl
.fields()
.inspect(|field| field_ptrs.push(AstPtr::new(field)))
.map(|field| RecordLitField {
name: field
.name_ref()
.map(|nr| nr.as_name())
.unwrap_or_else(Name::missing),
expr: if let Some(e) = field.expr() {
self.collect_expr(e)
} else if let Some(nr) = field.name_ref() {
// field shorthand
self.alloc_expr_field_shorthand(
Expr::Path(Path::from_name_ref(&nr)),
AstPtr::new(&field),
)
} else {
self.missing_expr()
},
})
.collect();
let spread = nfl.spread().map(|s| self.collect_expr(s));
Expr::RecordLit { path, fields, spread }
} else {
Expr::RecordLit { path, fields: Vec::new(), spread: None }
};
let res = self.alloc_expr(record_lit, syntax_ptr);
for (i, ptr) in field_ptrs.into_iter().enumerate() {
self.source_map.field_map.insert((res, i), ptr);
}
res
}
ast::Expr::FieldExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let name = match e.field_access() {
Some(kind) => kind.as_name(),
_ => Name::missing(),
};
self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
}
ast::Expr::AwaitExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Await { expr }, syntax_ptr)
}
ast::Expr::TryExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Try { expr }, syntax_ptr)
}
ast::Expr::CastExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let type_ref = TypeRef::from_ast_opt(e.type_ref());
self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
}
ast::Expr::RefExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let mutability = Mutability::from_mutable(e.is_mut());
self.alloc_expr(Expr::Ref { expr, mutability }, syntax_ptr)
}
ast::Expr::PrefixExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
if let Some(op) = e.op_kind() {
self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr)
} else {
self.alloc_expr(Expr::Missing, syntax_ptr)
}
}
ast::Expr::LambdaExpr(e) => {
let mut args = Vec::new();
let mut arg_types = Vec::new();
if let Some(pl) = e.param_list() {
for param in pl.params() {
let pat = self.collect_pat_opt(param.pat());
let type_ref = param.ascribed_type().map(TypeRef::from_ast);
args.push(pat);
arg_types.push(type_ref);
}
}
let body = self.collect_expr_opt(e.body());
self.alloc_expr(Expr::Lambda { args, arg_types, body }, syntax_ptr)
}
ast::Expr::BinExpr(e) => {
let lhs = self.collect_expr_opt(e.lhs());
let rhs = self.collect_expr_opt(e.rhs());
let op = e.op_kind().map(BinaryOp::from);
self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
}
ast::Expr::TupleExpr(e) => {
let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Tuple { exprs }, syntax_ptr)
}
ast::Expr::BoxExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Box { expr }, syntax_ptr)
}
ast::Expr::ArrayExpr(e) => {
let kind = e.kind();
match kind {
ArrayExprKind::ElementList(e) => {
let exprs = e.map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(Expr::Array(Array::ElementList(exprs)), syntax_ptr)
}
ArrayExprKind::Repeat { initializer, repeat } => {
let initializer = self.collect_expr_opt(initializer);
let repeat = self.collect_expr_opt(repeat);
self.alloc_expr(
Expr::Array(Array::Repeat { initializer, repeat }),
syntax_ptr,
)
}
}
}
ast::Expr::Literal(e) => {
let lit = match e.kind() {
LiteralKind::IntNumber { suffix } => {
let known_name = suffix.and_then(|it| BuiltinInt::from_suffix(&it));
Literal::Int(Default::default(), known_name)
}
LiteralKind::FloatNumber { suffix } => {
let known_name = suffix.and_then(|it| BuiltinFloat::from_suffix(&it));
Literal::Float(Default::default(), known_name)
}
LiteralKind::ByteString => Literal::ByteString(Default::default()),
LiteralKind::String => Literal::String(Default::default()),
LiteralKind::Byte => Literal::Int(Default::default(), Some(BuiltinInt::U8)),
LiteralKind::Bool => Literal::Bool(Default::default()),
LiteralKind::Char => Literal::Char(Default::default()),
};
self.alloc_expr(Expr::Literal(lit), syntax_ptr)
}
ast::Expr::IndexExpr(e) => {
let base = self.collect_expr_opt(e.base());
let index = self.collect_expr_opt(e.index());
self.alloc_expr(Expr::Index { base, index }, syntax_ptr)
}
// FIXME implement HIR for these:
ast::Expr::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::Expr::RangeExpr(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
ast::Expr::MacroCall(e) => {
let ast_id = AstId::new(
self.current_file_id,
self.db.ast_id_map(self.current_file_id).ast_id(&e),
);
if let Some(path) = e.path().and_then(|path| self.parse_path(path)) {
if let Some(def) = self.resolver.resolve_path_as_macro(self.db, &path) {
let call_id = self.db.intern_macro(MacroCallLoc { def, ast_id });
let file_id = call_id.as_file(MacroFileKind::Expr);
if let Some(node) = self.db.parse_or_expand(file_id) {
if let Some(expr) = ast::Expr::cast(node) {
log::debug!("macro expansion {:#?}", expr.syntax());
let old_file_id =
std::mem::replace(&mut self.current_file_id, file_id);
let id = self.collect_expr(expr);
self.current_file_id = old_file_id;
return id;
}
}
}
}
// FIXME: Instead of just dropping the error from expansion
// report it
self.alloc_expr(Expr::Missing, syntax_ptr)
}
}
}
fn collect_expr_opt(&mut self, expr: Option<ast::Expr>) -> ExprId {
if let Some(expr) = expr {
self.collect_expr(expr)
} else {
self.missing_expr()
}
}
fn collect_block(&mut self, expr: ast::BlockExpr) -> ExprId {
let syntax_node_ptr = AstPtr::new(&expr.clone().into());
let block = match expr.block() {
Some(block) => block,
None => return self.alloc_expr(Expr::Missing, syntax_node_ptr),
};
let statements = block
.statements()
.map(|s| match s {
ast::Stmt::LetStmt(stmt) => {
let pat = self.collect_pat_opt(stmt.pat());
let type_ref = stmt.ascribed_type().map(TypeRef::from_ast);
let initializer = stmt.initializer().map(|e| self.collect_expr(e));
Statement::Let { pat, type_ref, initializer }
}
ast::Stmt::ExprStmt(stmt) => Statement::Expr(self.collect_expr_opt(stmt.expr())),
})
.collect();
let tail = block.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Block { statements, tail }, syntax_node_ptr)
}
fn collect_block_opt(&mut self, expr: Option<ast::BlockExpr>) -> ExprId {
if let Some(block) = expr {
self.collect_block(block)
} else {
self.missing_expr()
}
}
fn collect_pat(&mut self, pat: ast::Pat) -> PatId {
let pattern = match &pat {
ast::Pat::BindPat(bp) => {
let name = bp.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let annotation = BindingAnnotation::new(bp.is_mutable(), bp.is_ref());
let subpat = bp.pat().map(|subpat| self.collect_pat(subpat));
Pat::Bind { name, mode: annotation, subpat }
}
ast::Pat::TupleStructPat(p) => {
let path = p.path().and_then(|path| self.parse_path(path));
let args = p.args().map(|p| self.collect_pat(p)).collect();
Pat::TupleStruct { path, args }
}
ast::Pat::RefPat(p) => {
let pat = self.collect_pat_opt(p.pat());
let mutability = Mutability::from_mutable(p.is_mut());
Pat::Ref { pat, mutability }
}
ast::Pat::PathPat(p) => {
let path = p.path().and_then(|path| self.parse_path(path));
path.map(Pat::Path).unwrap_or(Pat::Missing)
}
ast::Pat::TuplePat(p) => {
let args = p.args().map(|p| self.collect_pat(p)).collect();
Pat::Tuple(args)
}
ast::Pat::PlaceholderPat(_) => Pat::Wild,
ast::Pat::RecordPat(p) => {
let path = p.path().and_then(|path| self.parse_path(path));
let record_field_pat_list =
p.record_field_pat_list().expect("every struct should have a field list");
let mut fields: Vec<_> = record_field_pat_list
.bind_pats()
.filter_map(|bind_pat| {
let ast_pat =
ast::Pat::cast(bind_pat.syntax().clone()).expect("bind pat is a pat");
let pat = self.collect_pat(ast_pat);
let name = bind_pat.name()?.as_name();
Some(RecordFieldPat { name, pat })
})
.collect();
let iter = record_field_pat_list.record_field_pats().filter_map(|f| {
let ast_pat = f.pat()?;
let pat = self.collect_pat(ast_pat);
let name = f.name()?.as_name();
Some(RecordFieldPat { name, pat })
});
fields.extend(iter);
Pat::Record { path, args: fields }
}
// FIXME: implement
ast::Pat::DotDotPat(_) => Pat::Missing,
ast::Pat::BoxPat(_) => Pat::Missing,
ast::Pat::LiteralPat(_) => Pat::Missing,
ast::Pat::SlicePat(_) | ast::Pat::RangePat(_) => Pat::Missing,
};
let ptr = AstPtr::new(&pat);
self.alloc_pat(pattern, Either::A(ptr))
}
fn collect_pat_opt(&mut self, pat: Option<ast::Pat>) -> PatId {
if let Some(pat) = pat {
self.collect_pat(pat)
} else {
self.missing_pat()
}
}
fn parse_path(&mut self, path: ast::Path) -> Option<Path> {
let hygiene = Hygiene::new(self.db, self.current_file_id);
Path::from_src(path, &hygiene)
}
}
impl From<ast::BinOp> for BinaryOp {
fn from(ast_op: ast::BinOp) -> Self {

View File

@ -9,6 +9,8 @@
//! 3. Unresolved. Paths are stored as sequences of names, and not as defs the
//! names refer to.
//! 4. Desugared. There's no `if let`.
//!
//! See also a neighboring `body` module.
use hir_expand::name::Name;
use ra_arena::{impl_arena_id, RawId};