Rollup merge of #132423 - RalfJung:const-eval-align-offset, r=dtolnay
remove const-support for align_offset and is_aligned As part of the recent discussion to stabilize `ptr.is_null()` in const context, the general vibe was that it's okay for a const function to panic when the same operation would work at runtime (that's just a case of "dynamically detecting that something is not supported as a const operation"), but it is *not* okay for a const function to just return a different result. Following that, `is_aligned` and `is_aligned_to` have their const status revoked in this PR, since they do return actively wrong results at const time. In the future we can consider having a new intrinsic or so that can check whether a pointer is "guaranteed to be aligned", but the current implementation based on `align_offset` does not have the behavior we want. In fact `align_offset` itself behaves quite strangely in const, and that support needs a bunch of special hacks. That doesn't seem worth it. Instead, the users that can fall back to a different implementation should just use const_eval_select directly, and everything else should not be made const-callable. So this PR does exactly that, and entirely removes const support for align_offset. Closes some tracking issues by removing the associated features: Closes https://github.com/rust-lang/rust/issues/90962 Closes https://github.com/rust-lang/rust/issues/104203 Cc `@rust-lang/wg-const-eval` `@rust-lang/libs-api`
This commit is contained in:
commit
3313e760d0
@ -1,9 +1,6 @@
|
||||
const_eval_address_space_full =
|
||||
there are no more free addresses in the address space
|
||||
|
||||
const_eval_align_offset_invalid_align =
|
||||
`align_offset` called with non-power-of-two align: {$target_align}
|
||||
|
||||
const_eval_alignment_check_failed =
|
||||
{$msg ->
|
||||
[AccessedPtr] accessing memory
|
||||
|
@ -1,7 +1,6 @@
|
||||
use std::borrow::{Borrow, Cow};
|
||||
use std::fmt;
|
||||
use std::hash::Hash;
|
||||
use std::ops::ControlFlow;
|
||||
|
||||
use rustc_abi::{Align, ExternAbi, Size};
|
||||
use rustc_ast::Mutability;
|
||||
@ -10,7 +9,7 @@
|
||||
use rustc_hir::{self as hir, CRATE_HIR_ID, LangItem};
|
||||
use rustc_middle::mir::AssertMessage;
|
||||
use rustc_middle::query::TyCtxtAt;
|
||||
use rustc_middle::ty::layout::{FnAbiOf, TyAndLayout};
|
||||
use rustc_middle::ty::layout::TyAndLayout;
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||||
use rustc_middle::{bug, mir};
|
||||
use rustc_span::Span;
|
||||
@ -22,9 +21,9 @@
|
||||
use crate::fluent_generated as fluent;
|
||||
use crate::interpret::{
|
||||
self, AllocId, AllocRange, ConstAllocation, CtfeProvenance, FnArg, Frame, GlobalAlloc, ImmTy,
|
||||
InterpCx, InterpResult, MPlaceTy, OpTy, Pointer, PointerArithmetic, RangeSet, Scalar,
|
||||
StackPopCleanup, compile_time_machine, interp_ok, throw_exhaust, throw_inval, throw_ub,
|
||||
throw_ub_custom, throw_unsup, throw_unsup_format,
|
||||
InterpCx, InterpResult, MPlaceTy, OpTy, Pointer, RangeSet, Scalar, compile_time_machine,
|
||||
interp_ok, throw_exhaust, throw_inval, throw_ub, throw_ub_custom, throw_unsup,
|
||||
throw_unsup_format,
|
||||
};
|
||||
|
||||
/// When hitting this many interpreted terminators we emit a deny by default lint
|
||||
@ -226,8 +225,8 @@ fn hook_special_const_fn(
|
||||
&mut self,
|
||||
instance: ty::Instance<'tcx>,
|
||||
args: &[FnArg<'tcx>],
|
||||
dest: &MPlaceTy<'tcx>,
|
||||
ret: Option<mir::BasicBlock>,
|
||||
_dest: &MPlaceTy<'tcx>,
|
||||
_ret: Option<mir::BasicBlock>,
|
||||
) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
|
||||
let def_id = instance.def_id();
|
||||
|
||||
@ -259,85 +258,10 @@ fn hook_special_const_fn(
|
||||
);
|
||||
|
||||
return interp_ok(Some(new_instance));
|
||||
} else if self.tcx.is_lang_item(def_id, LangItem::AlignOffset) {
|
||||
let args = self.copy_fn_args(args);
|
||||
// For align_offset, we replace the function call if the pointer has no address.
|
||||
match self.align_offset(instance, &args, dest, ret)? {
|
||||
ControlFlow::Continue(()) => return interp_ok(Some(instance)),
|
||||
ControlFlow::Break(()) => return interp_ok(None),
|
||||
}
|
||||
}
|
||||
interp_ok(Some(instance))
|
||||
}
|
||||
|
||||
/// `align_offset(ptr, target_align)` needs special handling in const eval, because the pointer
|
||||
/// may not have an address.
|
||||
///
|
||||
/// If `ptr` does have a known address, then we return `Continue(())` and the function call should
|
||||
/// proceed as normal.
|
||||
///
|
||||
/// If `ptr` doesn't have an address, but its underlying allocation's alignment is at most
|
||||
/// `target_align`, then we call the function again with an dummy address relative to the
|
||||
/// allocation.
|
||||
///
|
||||
/// If `ptr` doesn't have an address and `target_align` is stricter than the underlying
|
||||
/// allocation's alignment, then we return `usize::MAX` immediately.
|
||||
fn align_offset(
|
||||
&mut self,
|
||||
instance: ty::Instance<'tcx>,
|
||||
args: &[OpTy<'tcx>],
|
||||
dest: &MPlaceTy<'tcx>,
|
||||
ret: Option<mir::BasicBlock>,
|
||||
) -> InterpResult<'tcx, ControlFlow<()>> {
|
||||
assert_eq!(args.len(), 2);
|
||||
|
||||
let ptr = self.read_pointer(&args[0])?;
|
||||
let target_align = self.read_scalar(&args[1])?.to_target_usize(self)?;
|
||||
|
||||
if !target_align.is_power_of_two() {
|
||||
throw_ub_custom!(
|
||||
fluent::const_eval_align_offset_invalid_align,
|
||||
target_align = target_align,
|
||||
);
|
||||
}
|
||||
|
||||
match self.ptr_try_get_alloc_id(ptr, 0) {
|
||||
Ok((alloc_id, offset, _extra)) => {
|
||||
let (_size, alloc_align, _kind) = self.get_alloc_info(alloc_id);
|
||||
|
||||
if target_align <= alloc_align.bytes() {
|
||||
// Extract the address relative to the allocation base that is definitely
|
||||
// sufficiently aligned and call `align_offset` again.
|
||||
let addr = ImmTy::from_uint(offset.bytes(), args[0].layout).into();
|
||||
let align = ImmTy::from_uint(target_align, args[1].layout).into();
|
||||
let fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
|
||||
|
||||
// Push the stack frame with our own adjusted arguments.
|
||||
self.init_stack_frame(
|
||||
instance,
|
||||
self.load_mir(instance.def, None)?,
|
||||
fn_abi,
|
||||
&[FnArg::Copy(addr), FnArg::Copy(align)],
|
||||
/* with_caller_location = */ false,
|
||||
dest,
|
||||
StackPopCleanup::Goto { ret, unwind: mir::UnwindAction::Unreachable },
|
||||
)?;
|
||||
interp_ok(ControlFlow::Break(()))
|
||||
} else {
|
||||
// Not alignable in const, return `usize::MAX`.
|
||||
let usize_max = Scalar::from_target_usize(self.target_usize_max(), self);
|
||||
self.write_scalar(usize_max, dest)?;
|
||||
self.return_to_block(ret)?;
|
||||
interp_ok(ControlFlow::Break(()))
|
||||
}
|
||||
}
|
||||
Err(_addr) => {
|
||||
// The pointer has an address, continue with function call.
|
||||
interp_ok(ControlFlow::Continue(()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// See documentation on the `ptr_guaranteed_cmp` intrinsic.
|
||||
fn guaranteed_cmp(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, u8> {
|
||||
interp_ok(match (a, b) {
|
||||
|
@ -348,9 +348,6 @@ pub fn extract(attrs: &[ast::Attribute]) -> Option<(Symbol, Span)> {
|
||||
|
||||
MaybeUninit, sym::maybe_uninit, maybe_uninit, Target::Union, GenericRequirement::None;
|
||||
|
||||
/// Align offset for stride != 1; must not panic.
|
||||
AlignOffset, sym::align_offset, align_offset_fn, Target::Fn, GenericRequirement::None;
|
||||
|
||||
Termination, sym::termination, termination, Target::Trait, GenericRequirement::None;
|
||||
|
||||
Try, sym::Try, try_trait, Target::Trait, GenericRequirement::None;
|
||||
|
@ -378,7 +378,6 @@
|
||||
aggregate_raw_ptr,
|
||||
alias,
|
||||
align,
|
||||
align_offset,
|
||||
alignment,
|
||||
all,
|
||||
alloc,
|
||||
|
@ -112,7 +112,6 @@
|
||||
#![feature(asm_experimental_arch)]
|
||||
#![feature(const_align_of_val)]
|
||||
#![feature(const_align_of_val_raw)]
|
||||
#![feature(const_align_offset)]
|
||||
#![feature(const_alloc_layout)]
|
||||
#![feature(const_black_box)]
|
||||
#![feature(const_char_encode_utf16)]
|
||||
@ -123,7 +122,6 @@
|
||||
#![feature(const_nonnull_new)]
|
||||
#![feature(const_option_ext)]
|
||||
#![feature(const_pin_2)]
|
||||
#![feature(const_pointer_is_aligned)]
|
||||
#![feature(const_ptr_is_null)]
|
||||
#![feature(const_ptr_sub_ptr)]
|
||||
#![feature(const_raw_ptr_comparison)]
|
||||
|
@ -1358,15 +1358,6 @@ pub unsafe fn read_volatile(self) -> T
|
||||
/// beyond the allocation that the pointer points into. It is up to the caller to ensure that
|
||||
/// the returned offset is correct in all terms other than alignment.
|
||||
///
|
||||
/// When this is called during compile-time evaluation (which is unstable), the implementation
|
||||
/// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
|
||||
/// actual alignment of pointers is not known yet during compile-time, so an offset with
|
||||
/// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
|
||||
/// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
|
||||
/// known, so the execution has to be correct for either choice. It is therefore impossible to
|
||||
/// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
|
||||
/// for unstable APIs.)
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// The function panics if `align` is not a power-of-two.
|
||||
@ -1395,8 +1386,7 @@ pub unsafe fn read_volatile(self) -> T
|
||||
#[must_use]
|
||||
#[inline]
|
||||
#[stable(feature = "align_offset", since = "1.36.0")]
|
||||
#[rustc_const_unstable(feature = "const_align_offset", issue = "90962")]
|
||||
pub const fn align_offset(self, align: usize) -> usize
|
||||
pub fn align_offset(self, align: usize) -> usize
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
@ -1431,94 +1421,10 @@ pub const fn align_offset(self, align: usize) -> usize
|
||||
/// assert!(ptr.is_aligned());
|
||||
/// assert!(!ptr.wrapping_byte_add(1).is_aligned());
|
||||
/// ```
|
||||
///
|
||||
/// # At compiletime
|
||||
/// **Note: Alignment at compiletime is experimental and subject to change. See the
|
||||
/// [tracking issue] for details.**
|
||||
///
|
||||
/// At compiletime, the compiler may not know where a value will end up in memory.
|
||||
/// Calling this function on a pointer created from a reference at compiletime will only
|
||||
/// return `true` if the pointer is guaranteed to be aligned. This means that the pointer
|
||||
/// is never aligned if cast to a type with a stricter alignment than the reference's
|
||||
/// underlying allocation.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let data = AlignedI32(42);
|
||||
/// let ptr = &data as *const AlignedI32;
|
||||
/// assert!(ptr.is_aligned());
|
||||
///
|
||||
/// // At runtime either `ptr1` or `ptr2` would be aligned, but at compiletime neither is aligned.
|
||||
/// let ptr1 = ptr.cast::<AlignedI64>();
|
||||
/// let ptr2 = ptr.wrapping_add(1).cast::<AlignedI64>();
|
||||
/// assert!(!ptr1.is_aligned());
|
||||
/// assert!(!ptr2.is_aligned());
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// Due to this behavior, it is possible that a runtime pointer derived from a compiletime
|
||||
/// pointer is aligned, even if the compiletime pointer wasn't aligned.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// // At compiletime, neither `COMPTIME_PTR` nor `COMPTIME_PTR + 1` is aligned.
|
||||
/// const COMPTIME_PTR: *const AlignedI32 = &AlignedI32(42);
|
||||
/// const _: () = assert!(!COMPTIME_PTR.cast::<AlignedI64>().is_aligned());
|
||||
/// const _: () = assert!(!COMPTIME_PTR.wrapping_add(1).cast::<AlignedI64>().is_aligned());
|
||||
///
|
||||
/// // At runtime, either `runtime_ptr` or `runtime_ptr + 1` is aligned.
|
||||
/// let runtime_ptr = COMPTIME_PTR;
|
||||
/// assert_ne!(
|
||||
/// runtime_ptr.cast::<AlignedI64>().is_aligned(),
|
||||
/// runtime_ptr.wrapping_add(1).cast::<AlignedI64>().is_aligned(),
|
||||
/// );
|
||||
/// ```
|
||||
///
|
||||
/// If a pointer is created from a fixed address, this function behaves the same during
|
||||
/// runtime and compiletime.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let ptr = 40 as *const AlignedI32;
|
||||
/// assert!(ptr.is_aligned());
|
||||
///
|
||||
/// // For pointers with a known address, runtime and compiletime behavior are identical.
|
||||
/// let ptr1 = ptr.cast::<AlignedI64>();
|
||||
/// let ptr2 = ptr.wrapping_add(1).cast::<AlignedI64>();
|
||||
/// assert!(ptr1.is_aligned());
|
||||
/// assert!(!ptr2.is_aligned());
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// [tracking issue]: https://github.com/rust-lang/rust/issues/104203
|
||||
#[must_use]
|
||||
#[inline]
|
||||
#[stable(feature = "pointer_is_aligned", since = "1.79.0")]
|
||||
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
|
||||
pub const fn is_aligned(self) -> bool
|
||||
pub fn is_aligned(self) -> bool
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
@ -1555,105 +1461,15 @@ pub const fn is_aligned(self) -> bool
|
||||
///
|
||||
/// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
|
||||
/// ```
|
||||
///
|
||||
/// # At compiletime
|
||||
/// **Note: Alignment at compiletime is experimental and subject to change. See the
|
||||
/// [tracking issue] for details.**
|
||||
///
|
||||
/// At compiletime, the compiler may not know where a value will end up in memory.
|
||||
/// Calling this function on a pointer created from a reference at compiletime will only
|
||||
/// return `true` if the pointer is guaranteed to be aligned. This means that the pointer
|
||||
/// cannot be stricter aligned than the reference's underlying allocation.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of i32 is less than 4.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let data = AlignedI32(42);
|
||||
/// let ptr = &data as *const AlignedI32;
|
||||
///
|
||||
/// assert!(ptr.is_aligned_to(1));
|
||||
/// assert!(ptr.is_aligned_to(2));
|
||||
/// assert!(ptr.is_aligned_to(4));
|
||||
///
|
||||
/// // At compiletime, we know for sure that the pointer isn't aligned to 8.
|
||||
/// assert!(!ptr.is_aligned_to(8));
|
||||
/// assert!(!ptr.wrapping_add(1).is_aligned_to(8));
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// Due to this behavior, it is possible that a runtime pointer derived from a compiletime
|
||||
/// pointer is aligned, even if the compiletime pointer wasn't aligned.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of i32 is less than 4.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
///
|
||||
/// // At compiletime, neither `COMPTIME_PTR` nor `COMPTIME_PTR + 1` is aligned.
|
||||
/// const COMPTIME_PTR: *const AlignedI32 = &AlignedI32(42);
|
||||
/// const _: () = assert!(!COMPTIME_PTR.is_aligned_to(8));
|
||||
/// const _: () = assert!(!COMPTIME_PTR.wrapping_add(1).is_aligned_to(8));
|
||||
///
|
||||
/// // At runtime, either `runtime_ptr` or `runtime_ptr + 1` is aligned.
|
||||
/// let runtime_ptr = COMPTIME_PTR;
|
||||
/// assert_ne!(
|
||||
/// runtime_ptr.is_aligned_to(8),
|
||||
/// runtime_ptr.wrapping_add(1).is_aligned_to(8),
|
||||
/// );
|
||||
/// ```
|
||||
///
|
||||
/// If a pointer is created from a fixed address, this function behaves the same during
|
||||
/// runtime and compiletime.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let ptr = 40 as *const u8;
|
||||
/// assert!(ptr.is_aligned_to(1));
|
||||
/// assert!(ptr.is_aligned_to(2));
|
||||
/// assert!(ptr.is_aligned_to(4));
|
||||
/// assert!(ptr.is_aligned_to(8));
|
||||
/// assert!(!ptr.is_aligned_to(16));
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// [tracking issue]: https://github.com/rust-lang/rust/issues/104203
|
||||
#[must_use]
|
||||
#[inline]
|
||||
#[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
|
||||
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
|
||||
pub const fn is_aligned_to(self, align: usize) -> bool {
|
||||
pub fn is_aligned_to(self, align: usize) -> bool {
|
||||
if !align.is_power_of_two() {
|
||||
panic!("is_aligned_to: align is not a power-of-two");
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn runtime_impl(ptr: *const (), align: usize) -> bool {
|
||||
ptr.addr() & (align - 1) == 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
|
||||
const fn const_impl(ptr: *const (), align: usize) -> bool {
|
||||
// We can't use the address of `self` in a `const fn`, so we use `align_offset` instead.
|
||||
ptr.align_offset(align) == 0
|
||||
}
|
||||
|
||||
// The cast to `()` is used to
|
||||
// 1. deal with fat pointers; and
|
||||
// 2. ensure that `align_offset` (in `const_impl`) doesn't actually try to compute an offset.
|
||||
const_eval_select((self.cast::<()>(), align), const_impl, runtime_impl)
|
||||
self.addr() & (align - 1) == 0
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1852,9 +1852,7 @@ pub unsafe fn write_volatile<T>(dst: *mut T, src: T) {
|
||||
///
|
||||
/// Any questions go to @nagisa.
|
||||
#[allow(ptr_to_integer_transmute_in_consts)]
|
||||
#[lang = "align_offset"]
|
||||
#[rustc_const_unstable(feature = "const_align_offset", issue = "90962")]
|
||||
pub(crate) const unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
|
||||
pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
|
||||
// FIXME(#75598): Direct use of these intrinsics improves codegen significantly at opt-level <=
|
||||
// 1, where the method versions of these operations are not inlined.
|
||||
use intrinsics::{
|
||||
@ -1915,11 +1913,7 @@ pub unsafe fn write_volatile<T>(dst: *mut T, src: T) {
|
||||
|
||||
let stride = mem::size_of::<T>();
|
||||
|
||||
// SAFETY: This is just an inlined `p.addr()` (which is not
|
||||
// a `const fn` so we cannot call it).
|
||||
// During const eval, we hook this function to ensure that the pointer never
|
||||
// has provenance, making this sound.
|
||||
let addr: usize = unsafe { mem::transmute(p) };
|
||||
let addr: usize = p.addr();
|
||||
|
||||
// SAFETY: `a` is a power-of-two, therefore non-zero.
|
||||
let a_minus_one = unsafe { unchecked_sub(a, 1) };
|
||||
|
@ -1,6 +1,5 @@
|
||||
use super::*;
|
||||
use crate::cmp::Ordering::{Equal, Greater, Less};
|
||||
use crate::intrinsics::const_eval_select;
|
||||
use crate::mem::SizedTypeProperties;
|
||||
use crate::slice::{self, SliceIndex};
|
||||
|
||||
@ -1636,8 +1635,7 @@ pub unsafe fn replace(self, src: T) -> T
|
||||
#[must_use]
|
||||
#[inline]
|
||||
#[stable(feature = "align_offset", since = "1.36.0")]
|
||||
#[rustc_const_unstable(feature = "const_align_offset", issue = "90962")]
|
||||
pub const fn align_offset(self, align: usize) -> usize
|
||||
pub fn align_offset(self, align: usize) -> usize
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
@ -1675,95 +1673,10 @@ pub const fn align_offset(self, align: usize) -> usize
|
||||
/// assert!(ptr.is_aligned());
|
||||
/// assert!(!ptr.wrapping_byte_add(1).is_aligned());
|
||||
/// ```
|
||||
///
|
||||
/// # At compiletime
|
||||
/// **Note: Alignment at compiletime is experimental and subject to change. See the
|
||||
/// [tracking issue] for details.**
|
||||
///
|
||||
/// At compiletime, the compiler may not know where a value will end up in memory.
|
||||
/// Calling this function on a pointer created from a reference at compiletime will only
|
||||
/// return `true` if the pointer is guaranteed to be aligned. This means that the pointer
|
||||
/// is never aligned if cast to a type with a stricter alignment than the reference's
|
||||
/// underlying allocation.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let mut data = AlignedI32(42);
|
||||
/// let ptr = &mut data as *mut AlignedI32;
|
||||
/// assert!(ptr.is_aligned());
|
||||
///
|
||||
/// // At runtime either `ptr1` or `ptr2` would be aligned, but at compiletime neither is aligned.
|
||||
/// let ptr1 = ptr.cast::<AlignedI64>();
|
||||
/// let ptr2 = ptr.wrapping_add(1).cast::<AlignedI64>();
|
||||
/// assert!(!ptr1.is_aligned());
|
||||
/// assert!(!ptr2.is_aligned());
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// Due to this behavior, it is possible that a runtime pointer derived from a compiletime
|
||||
/// pointer is aligned, even if the compiletime pointer wasn't aligned.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// // At compiletime, neither `COMPTIME_PTR` nor `COMPTIME_PTR + 1` is aligned.
|
||||
/// // Also, note that mutable references are not allowed in the final value of constants.
|
||||
/// const COMPTIME_PTR: *mut AlignedI32 = (&AlignedI32(42) as *const AlignedI32).cast_mut();
|
||||
/// const _: () = assert!(!COMPTIME_PTR.cast::<AlignedI64>().is_aligned());
|
||||
/// const _: () = assert!(!COMPTIME_PTR.wrapping_add(1).cast::<AlignedI64>().is_aligned());
|
||||
///
|
||||
/// // At runtime, either `runtime_ptr` or `runtime_ptr + 1` is aligned.
|
||||
/// let runtime_ptr = COMPTIME_PTR;
|
||||
/// assert_ne!(
|
||||
/// runtime_ptr.cast::<AlignedI64>().is_aligned(),
|
||||
/// runtime_ptr.wrapping_add(1).cast::<AlignedI64>().is_aligned(),
|
||||
/// );
|
||||
/// ```
|
||||
///
|
||||
/// If a pointer is created from a fixed address, this function behaves the same during
|
||||
/// runtime and compiletime.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let ptr = 40 as *mut AlignedI32;
|
||||
/// assert!(ptr.is_aligned());
|
||||
///
|
||||
/// // For pointers with a known address, runtime and compiletime behavior are identical.
|
||||
/// let ptr1 = ptr.cast::<AlignedI64>();
|
||||
/// let ptr2 = ptr.wrapping_add(1).cast::<AlignedI64>();
|
||||
/// assert!(ptr1.is_aligned());
|
||||
/// assert!(!ptr2.is_aligned());
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// [tracking issue]: https://github.com/rust-lang/rust/issues/104203
|
||||
#[must_use]
|
||||
#[inline]
|
||||
#[stable(feature = "pointer_is_aligned", since = "1.79.0")]
|
||||
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
|
||||
pub const fn is_aligned(self) -> bool
|
||||
pub fn is_aligned(self) -> bool
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
@ -1800,106 +1713,15 @@ pub const fn is_aligned(self) -> bool
|
||||
///
|
||||
/// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
|
||||
/// ```
|
||||
///
|
||||
/// # At compiletime
|
||||
/// **Note: Alignment at compiletime is experimental and subject to change. See the
|
||||
/// [tracking issue] for details.**
|
||||
///
|
||||
/// At compiletime, the compiler may not know where a value will end up in memory.
|
||||
/// Calling this function on a pointer created from a reference at compiletime will only
|
||||
/// return `true` if the pointer is guaranteed to be aligned. This means that the pointer
|
||||
/// cannot be stricter aligned than the reference's underlying allocation.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of i32 is less than 4.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let mut data = AlignedI32(42);
|
||||
/// let ptr = &mut data as *mut AlignedI32;
|
||||
///
|
||||
/// assert!(ptr.is_aligned_to(1));
|
||||
/// assert!(ptr.is_aligned_to(2));
|
||||
/// assert!(ptr.is_aligned_to(4));
|
||||
///
|
||||
/// // At compiletime, we know for sure that the pointer isn't aligned to 8.
|
||||
/// assert!(!ptr.is_aligned_to(8));
|
||||
/// assert!(!ptr.wrapping_add(1).is_aligned_to(8));
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// Due to this behavior, it is possible that a runtime pointer derived from a compiletime
|
||||
/// pointer is aligned, even if the compiletime pointer wasn't aligned.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of i32 is less than 4.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
///
|
||||
/// // At compiletime, neither `COMPTIME_PTR` nor `COMPTIME_PTR + 1` is aligned.
|
||||
/// // Also, note that mutable references are not allowed in the final value of constants.
|
||||
/// const COMPTIME_PTR: *mut AlignedI32 = (&AlignedI32(42) as *const AlignedI32).cast_mut();
|
||||
/// const _: () = assert!(!COMPTIME_PTR.is_aligned_to(8));
|
||||
/// const _: () = assert!(!COMPTIME_PTR.wrapping_add(1).is_aligned_to(8));
|
||||
///
|
||||
/// // At runtime, either `runtime_ptr` or `runtime_ptr + 1` is aligned.
|
||||
/// let runtime_ptr = COMPTIME_PTR;
|
||||
/// assert_ne!(
|
||||
/// runtime_ptr.is_aligned_to(8),
|
||||
/// runtime_ptr.wrapping_add(1).is_aligned_to(8),
|
||||
/// );
|
||||
/// ```
|
||||
///
|
||||
/// If a pointer is created from a fixed address, this function behaves the same during
|
||||
/// runtime and compiletime.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let ptr = 40 as *mut u8;
|
||||
/// assert!(ptr.is_aligned_to(1));
|
||||
/// assert!(ptr.is_aligned_to(2));
|
||||
/// assert!(ptr.is_aligned_to(4));
|
||||
/// assert!(ptr.is_aligned_to(8));
|
||||
/// assert!(!ptr.is_aligned_to(16));
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// [tracking issue]: https://github.com/rust-lang/rust/issues/104203
|
||||
#[must_use]
|
||||
#[inline]
|
||||
#[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
|
||||
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
|
||||
pub const fn is_aligned_to(self, align: usize) -> bool {
|
||||
pub fn is_aligned_to(self, align: usize) -> bool {
|
||||
if !align.is_power_of_two() {
|
||||
panic!("is_aligned_to: align is not a power-of-two");
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn runtime_impl(ptr: *mut (), align: usize) -> bool {
|
||||
ptr.addr() & (align - 1) == 0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
|
||||
const fn const_impl(ptr: *mut (), align: usize) -> bool {
|
||||
// We can't use the address of `self` in a `const fn`, so we use `align_offset` instead.
|
||||
ptr.align_offset(align) == 0
|
||||
}
|
||||
|
||||
// The cast to `()` is used to
|
||||
// 1. deal with fat pointers; and
|
||||
// 2. ensure that `align_offset` (in `const_impl`) doesn't actually try to compute an offset.
|
||||
const_eval_select((self.cast::<()>(), align), const_impl, runtime_impl)
|
||||
self.addr() & (align - 1) == 0
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1192,8 +1192,7 @@ pub unsafe fn replace(self, src: T) -> T
|
||||
#[inline]
|
||||
#[must_use]
|
||||
#[stable(feature = "non_null_convenience", since = "1.80.0")]
|
||||
#[rustc_const_unstable(feature = "const_align_offset", issue = "90962")]
|
||||
pub const fn align_offset(self, align: usize) -> usize
|
||||
pub fn align_offset(self, align: usize) -> usize
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
@ -1224,98 +1223,10 @@ pub const fn align_offset(self, align: usize) -> usize
|
||||
/// assert!(ptr.is_aligned());
|
||||
/// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
|
||||
/// ```
|
||||
///
|
||||
/// # At compiletime
|
||||
/// **Note: Alignment at compiletime is experimental and subject to change. See the
|
||||
/// [tracking issue] for details.**
|
||||
///
|
||||
/// At compiletime, the compiler may not know where a value will end up in memory.
|
||||
/// Calling this function on a pointer created from a reference at compiletime will only
|
||||
/// return `true` if the pointer is guaranteed to be aligned. This means that the pointer
|
||||
/// is never aligned if cast to a type with a stricter alignment than the reference's
|
||||
/// underlying allocation.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_nonnull_new)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
/// use std::ptr::NonNull;
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let data = [AlignedI32(42), AlignedI32(42)];
|
||||
/// let ptr = NonNull::<AlignedI32>::new(&data[0] as *const _ as *mut _).unwrap();
|
||||
/// assert!(ptr.is_aligned());
|
||||
///
|
||||
/// // At runtime either `ptr1` or `ptr2` would be aligned, but at compiletime neither is aligned.
|
||||
/// let ptr1 = ptr.cast::<AlignedI64>();
|
||||
/// let ptr2 = unsafe { ptr.add(1).cast::<AlignedI64>() };
|
||||
/// assert!(!ptr1.is_aligned());
|
||||
/// assert!(!ptr2.is_aligned());
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// Due to this behavior, it is possible that a runtime pointer derived from a compiletime
|
||||
/// pointer is aligned, even if the compiletime pointer wasn't aligned.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// // At compiletime, neither `COMPTIME_PTR` nor `COMPTIME_PTR + 1` is aligned.
|
||||
/// const COMPTIME_PTR: *const AlignedI32 = &AlignedI32(42);
|
||||
/// const _: () = assert!(!COMPTIME_PTR.cast::<AlignedI64>().is_aligned());
|
||||
/// const _: () = assert!(!COMPTIME_PTR.wrapping_add(1).cast::<AlignedI64>().is_aligned());
|
||||
///
|
||||
/// // At runtime, either `runtime_ptr` or `runtime_ptr + 1` is aligned.
|
||||
/// let runtime_ptr = COMPTIME_PTR;
|
||||
/// assert_ne!(
|
||||
/// runtime_ptr.cast::<AlignedI64>().is_aligned(),
|
||||
/// runtime_ptr.wrapping_add(1).cast::<AlignedI64>().is_aligned(),
|
||||
/// );
|
||||
/// ```
|
||||
///
|
||||
/// If a pointer is created from a fixed address, this function behaves the same during
|
||||
/// runtime and compiletime.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
/// #![feature(const_nonnull_new)]
|
||||
/// use std::ptr::NonNull;
|
||||
///
|
||||
/// // On some platforms, the alignment of primitives is less than their size.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
/// #[repr(align(8))]
|
||||
/// struct AlignedI64(i64);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let ptr = NonNull::new(40 as *mut AlignedI32).unwrap();
|
||||
/// assert!(ptr.is_aligned());
|
||||
///
|
||||
/// // For pointers with a known address, runtime and compiletime behavior are identical.
|
||||
/// let ptr1 = ptr.cast::<AlignedI64>();
|
||||
/// let ptr2 = NonNull::new(ptr.as_ptr().wrapping_add(1)).unwrap().cast::<AlignedI64>();
|
||||
/// assert!(ptr1.is_aligned());
|
||||
/// assert!(!ptr2.is_aligned());
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// [tracking issue]: https://github.com/rust-lang/rust/issues/104203
|
||||
#[inline]
|
||||
#[must_use]
|
||||
#[stable(feature = "pointer_is_aligned", since = "1.79.0")]
|
||||
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
|
||||
pub const fn is_aligned(self) -> bool
|
||||
pub fn is_aligned(self) -> bool
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
@ -1352,85 +1263,10 @@ pub const fn is_aligned(self) -> bool
|
||||
///
|
||||
/// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
|
||||
/// ```
|
||||
///
|
||||
/// # At compiletime
|
||||
/// **Note: Alignment at compiletime is experimental and subject to change. See the
|
||||
/// [tracking issue] for details.**
|
||||
///
|
||||
/// At compiletime, the compiler may not know where a value will end up in memory.
|
||||
/// Calling this function on a pointer created from a reference at compiletime will only
|
||||
/// return `true` if the pointer is guaranteed to be aligned. This means that the pointer
|
||||
/// cannot be stricter aligned than the reference's underlying allocation.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of i32 is less than 4.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let data = AlignedI32(42);
|
||||
/// let ptr = &data as *const AlignedI32;
|
||||
///
|
||||
/// assert!(ptr.is_aligned_to(1));
|
||||
/// assert!(ptr.is_aligned_to(2));
|
||||
/// assert!(ptr.is_aligned_to(4));
|
||||
///
|
||||
/// // At compiletime, we know for sure that the pointer isn't aligned to 8.
|
||||
/// assert!(!ptr.is_aligned_to(8));
|
||||
/// assert!(!ptr.wrapping_add(1).is_aligned_to(8));
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// Due to this behavior, it is possible that a runtime pointer derived from a compiletime
|
||||
/// pointer is aligned, even if the compiletime pointer wasn't aligned.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// // On some platforms, the alignment of i32 is less than 4.
|
||||
/// #[repr(align(4))]
|
||||
/// struct AlignedI32(i32);
|
||||
///
|
||||
/// // At compiletime, neither `COMPTIME_PTR` nor `COMPTIME_PTR + 1` is aligned.
|
||||
/// const COMPTIME_PTR: *const AlignedI32 = &AlignedI32(42);
|
||||
/// const _: () = assert!(!COMPTIME_PTR.is_aligned_to(8));
|
||||
/// const _: () = assert!(!COMPTIME_PTR.wrapping_add(1).is_aligned_to(8));
|
||||
///
|
||||
/// // At runtime, either `runtime_ptr` or `runtime_ptr + 1` is aligned.
|
||||
/// let runtime_ptr = COMPTIME_PTR;
|
||||
/// assert_ne!(
|
||||
/// runtime_ptr.is_aligned_to(8),
|
||||
/// runtime_ptr.wrapping_add(1).is_aligned_to(8),
|
||||
/// );
|
||||
/// ```
|
||||
///
|
||||
/// If a pointer is created from a fixed address, this function behaves the same during
|
||||
/// runtime and compiletime.
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(pointer_is_aligned_to)]
|
||||
/// #![feature(const_pointer_is_aligned)]
|
||||
///
|
||||
/// const _: () = {
|
||||
/// let ptr = 40 as *const u8;
|
||||
/// assert!(ptr.is_aligned_to(1));
|
||||
/// assert!(ptr.is_aligned_to(2));
|
||||
/// assert!(ptr.is_aligned_to(4));
|
||||
/// assert!(ptr.is_aligned_to(8));
|
||||
/// assert!(!ptr.is_aligned_to(16));
|
||||
/// };
|
||||
/// ```
|
||||
///
|
||||
/// [tracking issue]: https://github.com/rust-lang/rust/issues/104203
|
||||
#[inline]
|
||||
#[must_use]
|
||||
#[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
|
||||
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
|
||||
pub const fn is_aligned_to(self, align: usize) -> bool {
|
||||
pub fn is_aligned_to(self, align: usize) -> bool {
|
||||
self.pointer.is_aligned_to(align)
|
||||
}
|
||||
}
|
||||
|
@ -3,6 +3,7 @@
|
||||
use core::ascii::EscapeDefault;
|
||||
|
||||
use crate::fmt::{self, Write};
|
||||
use crate::intrinsics::const_eval_select;
|
||||
use crate::{ascii, iter, mem, ops};
|
||||
|
||||
#[cfg(not(test))]
|
||||
@ -346,89 +347,93 @@ pub const fn is_ascii_simple(mut bytes: &[u8]) -> bool {
|
||||
/// If any of these loads produces something for which `contains_nonascii`
|
||||
/// (above) returns true, then we know the answer is false.
|
||||
#[inline]
|
||||
#[rustc_allow_const_fn_unstable(const_raw_ptr_comparison, const_pointer_is_aligned)] // only in a debug assertion
|
||||
#[rustc_allow_const_fn_unstable(const_align_offset)] // behavior does not change when `align_offset` fails
|
||||
#[rustc_allow_const_fn_unstable(const_eval_select)] // fallback impl has same behavior
|
||||
const fn is_ascii(s: &[u8]) -> bool {
|
||||
const USIZE_SIZE: usize = mem::size_of::<usize>();
|
||||
// The runtime version behaves the same as the compiletime version, it's
|
||||
// just more optimized.
|
||||
return const_eval_select((s,), compiletime, runtime);
|
||||
|
||||
let len = s.len();
|
||||
let align_offset = s.as_ptr().align_offset(USIZE_SIZE);
|
||||
|
||||
// If we wouldn't gain anything from the word-at-a-time implementation, fall
|
||||
// back to a scalar loop.
|
||||
//
|
||||
// We also do this for architectures where `size_of::<usize>()` isn't
|
||||
// sufficient alignment for `usize`, because it's a weird edge case.
|
||||
if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < mem::align_of::<usize>() {
|
||||
return is_ascii_simple(s);
|
||||
const fn compiletime(s: &[u8]) -> bool {
|
||||
is_ascii_simple(s)
|
||||
}
|
||||
|
||||
// We always read the first word unaligned, which means `align_offset` is
|
||||
// 0, we'd read the same value again for the aligned read.
|
||||
let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset };
|
||||
#[inline]
|
||||
fn runtime(s: &[u8]) -> bool {
|
||||
const USIZE_SIZE: usize = mem::size_of::<usize>();
|
||||
|
||||
let start = s.as_ptr();
|
||||
// SAFETY: We verify `len < USIZE_SIZE` above.
|
||||
let first_word = unsafe { (start as *const usize).read_unaligned() };
|
||||
let len = s.len();
|
||||
let align_offset = s.as_ptr().align_offset(USIZE_SIZE);
|
||||
|
||||
if contains_nonascii(first_word) {
|
||||
return false;
|
||||
}
|
||||
// We checked this above, somewhat implicitly. Note that `offset_to_aligned`
|
||||
// is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked
|
||||
// above.
|
||||
debug_assert!(offset_to_aligned <= len);
|
||||
|
||||
// SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the
|
||||
// middle chunk of the slice.
|
||||
let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize };
|
||||
|
||||
// `byte_pos` is the byte index of `word_ptr`, used for loop end checks.
|
||||
let mut byte_pos = offset_to_aligned;
|
||||
|
||||
// Paranoia check about alignment, since we're about to do a bunch of
|
||||
// unaligned loads. In practice this should be impossible barring a bug in
|
||||
// `align_offset` though.
|
||||
// While this method is allowed to spuriously fail in CTFE, if it doesn't
|
||||
// have alignment information it should have given a `usize::MAX` for
|
||||
// `align_offset` earlier, sending things through the scalar path instead of
|
||||
// this one, so this check should pass if it's reachable.
|
||||
debug_assert!(word_ptr.is_aligned_to(mem::align_of::<usize>()));
|
||||
|
||||
// Read subsequent words until the last aligned word, excluding the last
|
||||
// aligned word by itself to be done in tail check later, to ensure that
|
||||
// tail is always one `usize` at most to extra branch `byte_pos == len`.
|
||||
while byte_pos < len - USIZE_SIZE {
|
||||
// Sanity check that the read is in bounds
|
||||
debug_assert!(byte_pos + USIZE_SIZE <= len);
|
||||
// And that our assumptions about `byte_pos` hold.
|
||||
debug_assert!(matches!(
|
||||
word_ptr.cast::<u8>().guaranteed_eq(start.wrapping_add(byte_pos)),
|
||||
// These are from the same allocation, so will hopefully always be
|
||||
// known to match even in CTFE, but if it refuses to compare them
|
||||
// that's ok since it's just a debug check anyway.
|
||||
None | Some(true),
|
||||
));
|
||||
|
||||
// SAFETY: We know `word_ptr` is properly aligned (because of
|
||||
// `align_offset`), and we know that we have enough bytes between `word_ptr` and the end
|
||||
let word = unsafe { word_ptr.read() };
|
||||
if contains_nonascii(word) {
|
||||
return false;
|
||||
// If we wouldn't gain anything from the word-at-a-time implementation, fall
|
||||
// back to a scalar loop.
|
||||
//
|
||||
// We also do this for architectures where `size_of::<usize>()` isn't
|
||||
// sufficient alignment for `usize`, because it's a weird edge case.
|
||||
if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < mem::align_of::<usize>() {
|
||||
return is_ascii_simple(s);
|
||||
}
|
||||
|
||||
byte_pos += USIZE_SIZE;
|
||||
// SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that
|
||||
// after this `add`, `word_ptr` will be at most one-past-the-end.
|
||||
word_ptr = unsafe { word_ptr.add(1) };
|
||||
// We always read the first word unaligned, which means `align_offset` is
|
||||
// 0, we'd read the same value again for the aligned read.
|
||||
let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset };
|
||||
|
||||
let start = s.as_ptr();
|
||||
// SAFETY: We verify `len < USIZE_SIZE` above.
|
||||
let first_word = unsafe { (start as *const usize).read_unaligned() };
|
||||
|
||||
if contains_nonascii(first_word) {
|
||||
return false;
|
||||
}
|
||||
// We checked this above, somewhat implicitly. Note that `offset_to_aligned`
|
||||
// is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked
|
||||
// above.
|
||||
debug_assert!(offset_to_aligned <= len);
|
||||
|
||||
// SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the
|
||||
// middle chunk of the slice.
|
||||
let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize };
|
||||
|
||||
// `byte_pos` is the byte index of `word_ptr`, used for loop end checks.
|
||||
let mut byte_pos = offset_to_aligned;
|
||||
|
||||
// Paranoia check about alignment, since we're about to do a bunch of
|
||||
// unaligned loads. In practice this should be impossible barring a bug in
|
||||
// `align_offset` though.
|
||||
// While this method is allowed to spuriously fail in CTFE, if it doesn't
|
||||
// have alignment information it should have given a `usize::MAX` for
|
||||
// `align_offset` earlier, sending things through the scalar path instead of
|
||||
// this one, so this check should pass if it's reachable.
|
||||
debug_assert!(word_ptr.is_aligned_to(mem::align_of::<usize>()));
|
||||
|
||||
// Read subsequent words until the last aligned word, excluding the last
|
||||
// aligned word by itself to be done in tail check later, to ensure that
|
||||
// tail is always one `usize` at most to extra branch `byte_pos == len`.
|
||||
while byte_pos < len - USIZE_SIZE {
|
||||
// Sanity check that the read is in bounds
|
||||
debug_assert!(byte_pos + USIZE_SIZE <= len);
|
||||
// And that our assumptions about `byte_pos` hold.
|
||||
debug_assert!(word_ptr.cast::<u8>() == start.wrapping_add(byte_pos));
|
||||
|
||||
// SAFETY: We know `word_ptr` is properly aligned (because of
|
||||
// `align_offset`), and we know that we have enough bytes between `word_ptr` and the end
|
||||
let word = unsafe { word_ptr.read() };
|
||||
if contains_nonascii(word) {
|
||||
return false;
|
||||
}
|
||||
|
||||
byte_pos += USIZE_SIZE;
|
||||
// SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that
|
||||
// after this `add`, `word_ptr` will be at most one-past-the-end.
|
||||
word_ptr = unsafe { word_ptr.add(1) };
|
||||
}
|
||||
|
||||
// Sanity check to ensure there really is only one `usize` left. This should
|
||||
// be guaranteed by our loop condition.
|
||||
debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE);
|
||||
|
||||
// SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start.
|
||||
let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() };
|
||||
|
||||
!contains_nonascii(last_word)
|
||||
}
|
||||
|
||||
// Sanity check to ensure there really is only one `usize` left. This should
|
||||
// be guaranteed by our loop condition.
|
||||
debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE);
|
||||
|
||||
// SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start.
|
||||
let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() };
|
||||
|
||||
!contains_nonascii(last_word)
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
// Original implementation taken from rust-memchr.
|
||||
// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
|
||||
|
||||
use crate::intrinsics::const_eval_select;
|
||||
use crate::mem;
|
||||
|
||||
const LO_USIZE: usize = usize::repeat_u8(0x01);
|
||||
@ -50,58 +51,66 @@ const fn memchr_naive(x: u8, text: &[u8]) -> Option<usize> {
|
||||
None
|
||||
}
|
||||
|
||||
#[rustc_allow_const_fn_unstable(const_cmp)]
|
||||
#[rustc_allow_const_fn_unstable(const_align_offset)]
|
||||
#[rustc_allow_const_fn_unstable(const_eval_select)] // fallback impl has same behavior
|
||||
#[cfg_attr(bootstrap, rustc_const_stable(feature = "const_memchr", since = "1.65.0"))]
|
||||
const fn memchr_aligned(x: u8, text: &[u8]) -> Option<usize> {
|
||||
// Scan for a single byte value by reading two `usize` words at a time.
|
||||
//
|
||||
// Split `text` in three parts
|
||||
// - unaligned initial part, before the first word aligned address in text
|
||||
// - body, scan by 2 words at a time
|
||||
// - the last remaining part, < 2 word size
|
||||
// The runtime version behaves the same as the compiletime version, it's
|
||||
// just more optimized.
|
||||
return const_eval_select((x, text), compiletime, runtime);
|
||||
|
||||
// search up to an aligned boundary
|
||||
let len = text.len();
|
||||
let ptr = text.as_ptr();
|
||||
let mut offset = ptr.align_offset(USIZE_BYTES);
|
||||
|
||||
if offset > 0 {
|
||||
// FIXME(const-hack, fee1-dead): replace with min
|
||||
offset = if offset < len { offset } else { len };
|
||||
// FIXME(const-hack, fee1-dead): replace with range slicing
|
||||
// SAFETY: offset is within bounds
|
||||
let slice = unsafe { super::from_raw_parts(text.as_ptr(), offset) };
|
||||
if let Some(index) = memchr_naive(x, slice) {
|
||||
return Some(index);
|
||||
}
|
||||
const fn compiletime(x: u8, text: &[u8]) -> Option<usize> {
|
||||
memchr_naive(x, text)
|
||||
}
|
||||
|
||||
// search the body of the text
|
||||
let repeated_x = usize::repeat_u8(x);
|
||||
while offset <= len - 2 * USIZE_BYTES {
|
||||
// SAFETY: the while's predicate guarantees a distance of at least 2 * usize_bytes
|
||||
// between the offset and the end of the slice.
|
||||
unsafe {
|
||||
let u = *(ptr.add(offset) as *const usize);
|
||||
let v = *(ptr.add(offset + USIZE_BYTES) as *const usize);
|
||||
#[inline]
|
||||
fn runtime(x: u8, text: &[u8]) -> Option<usize> {
|
||||
// Scan for a single byte value by reading two `usize` words at a time.
|
||||
//
|
||||
// Split `text` in three parts
|
||||
// - unaligned initial part, before the first word aligned address in text
|
||||
// - body, scan by 2 words at a time
|
||||
// - the last remaining part, < 2 word size
|
||||
|
||||
// break if there is a matching byte
|
||||
let zu = contains_zero_byte(u ^ repeated_x);
|
||||
let zv = contains_zero_byte(v ^ repeated_x);
|
||||
if zu || zv {
|
||||
break;
|
||||
// search up to an aligned boundary
|
||||
let len = text.len();
|
||||
let ptr = text.as_ptr();
|
||||
let mut offset = ptr.align_offset(USIZE_BYTES);
|
||||
|
||||
if offset > 0 {
|
||||
offset = offset.min(len);
|
||||
let slice = &text[..offset];
|
||||
if let Some(index) = memchr_naive(x, slice) {
|
||||
return Some(index);
|
||||
}
|
||||
}
|
||||
offset += USIZE_BYTES * 2;
|
||||
}
|
||||
|
||||
// Find the byte after the point the body loop stopped.
|
||||
// FIXME(const-hack): Use `?` instead.
|
||||
// FIXME(const-hack, fee1-dead): use range slicing
|
||||
// SAFETY: offset is within bounds
|
||||
let slice = unsafe { super::from_raw_parts(text.as_ptr().add(offset), text.len() - offset) };
|
||||
if let Some(i) = memchr_naive(x, slice) { Some(offset + i) } else { None }
|
||||
// search the body of the text
|
||||
let repeated_x = usize::repeat_u8(x);
|
||||
while offset <= len - 2 * USIZE_BYTES {
|
||||
// SAFETY: the while's predicate guarantees a distance of at least 2 * usize_bytes
|
||||
// between the offset and the end of the slice.
|
||||
unsafe {
|
||||
let u = *(ptr.add(offset) as *const usize);
|
||||
let v = *(ptr.add(offset + USIZE_BYTES) as *const usize);
|
||||
|
||||
// break if there is a matching byte
|
||||
let zu = contains_zero_byte(u ^ repeated_x);
|
||||
let zv = contains_zero_byte(v ^ repeated_x);
|
||||
if zu || zv {
|
||||
break;
|
||||
}
|
||||
}
|
||||
offset += USIZE_BYTES * 2;
|
||||
}
|
||||
|
||||
// Find the byte after the point the body loop stopped.
|
||||
// FIXME(const-hack): Use `?` instead.
|
||||
// FIXME(const-hack, fee1-dead): use range slicing
|
||||
let slice =
|
||||
// SAFETY: offset is within bounds
|
||||
unsafe { super::from_raw_parts(text.as_ptr().add(offset), text.len() - offset) };
|
||||
if let Some(i) = memchr_naive(x, slice) { Some(offset + i) } else { None }
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the last index matching the byte `x` in `text`.
|
||||
|
@ -82,7 +82,6 @@
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
#[rustc_const_stable(feature = "const_str_from_utf8_shared", since = "1.63.0")]
|
||||
#[rustc_allow_const_fn_unstable(str_internals)]
|
||||
#[rustc_diagnostic_item = "str_from_utf8"]
|
||||
pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
|
||||
// FIXME(const-hack): This should use `?` again, once it's `const`
|
||||
|
@ -1,6 +1,7 @@
|
||||
//! Operations related to UTF-8 validation.
|
||||
|
||||
use super::Utf8Error;
|
||||
use crate::intrinsics::const_eval_select;
|
||||
use crate::mem;
|
||||
|
||||
/// Returns the initial codepoint accumulator for the first byte.
|
||||
@ -122,15 +123,28 @@ const fn contains_nonascii(x: usize) -> bool {
|
||||
/// Walks through `v` checking that it's a valid UTF-8 sequence,
|
||||
/// returning `Ok(())` in that case, or, if it is invalid, `Err(err)`.
|
||||
#[inline(always)]
|
||||
#[rustc_const_unstable(feature = "str_internals", issue = "none")]
|
||||
#[rustc_allow_const_fn_unstable(const_eval_select)] // fallback impl has same behavior
|
||||
pub(super) const fn run_utf8_validation(v: &[u8]) -> Result<(), Utf8Error> {
|
||||
let mut index = 0;
|
||||
let len = v.len();
|
||||
|
||||
let usize_bytes = mem::size_of::<usize>();
|
||||
let ascii_block_size = 2 * usize_bytes;
|
||||
const USIZE_BYTES: usize = mem::size_of::<usize>();
|
||||
|
||||
let ascii_block_size = 2 * USIZE_BYTES;
|
||||
let blocks_end = if len >= ascii_block_size { len - ascii_block_size + 1 } else { 0 };
|
||||
let align = v.as_ptr().align_offset(usize_bytes);
|
||||
let align = {
|
||||
const fn compiletime(_v: &[u8]) -> usize {
|
||||
usize::MAX
|
||||
}
|
||||
|
||||
fn runtime(v: &[u8]) -> usize {
|
||||
v.as_ptr().align_offset(USIZE_BYTES)
|
||||
}
|
||||
|
||||
// Below, we safely fall back to a slower codepath if the offset is `usize::MAX`,
|
||||
// so the end-to-end behavior is the same at compiletime and runtime.
|
||||
const_eval_select((v,), compiletime, runtime)
|
||||
};
|
||||
|
||||
while index < len {
|
||||
let old_offset = index;
|
||||
@ -209,11 +223,11 @@ macro_rules! next {
|
||||
// Ascii case, try to skip forward quickly.
|
||||
// When the pointer is aligned, read 2 words of data per iteration
|
||||
// until we find a word containing a non-ascii byte.
|
||||
if align != usize::MAX && align.wrapping_sub(index) % usize_bytes == 0 {
|
||||
if align != usize::MAX && align.wrapping_sub(index) % USIZE_BYTES == 0 {
|
||||
let ptr = v.as_ptr();
|
||||
while index < blocks_end {
|
||||
// SAFETY: since `align - index` and `ascii_block_size` are
|
||||
// multiples of `usize_bytes`, `block = ptr.add(index)` is
|
||||
// multiples of `USIZE_BYTES`, `block = ptr.add(index)` is
|
||||
// always aligned with a `usize` so it's safe to dereference
|
||||
// both `block` and `block.add(1)`.
|
||||
unsafe {
|
||||
|
@ -120,7 +120,19 @@ const fn comptime() -> bool {
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_ub_checks", issue = "none")]
|
||||
pub(crate) const fn is_aligned_and_not_null(ptr: *const (), align: usize, is_zst: bool) -> bool {
|
||||
ptr.is_aligned_to(align) && (is_zst || !ptr.is_null())
|
||||
#[inline]
|
||||
fn runtime(ptr: *const (), align: usize, is_zst: bool) -> bool {
|
||||
ptr.is_aligned_to(align) && (is_zst || !ptr.is_null())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_ub_checks", issue = "none")]
|
||||
const fn comptime(ptr: *const (), _align: usize, is_zst: bool) -> bool {
|
||||
is_zst || !ptr.is_null()
|
||||
}
|
||||
|
||||
// This is just for safety checks so we can const_eval_select.
|
||||
const_eval_select((ptr, align, is_zst), comptime, runtime)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
@ -16,14 +16,12 @@
|
||||
#![feature(cell_update)]
|
||||
#![feature(clone_to_uninit)]
|
||||
#![feature(const_align_of_val_raw)]
|
||||
#![feature(const_align_offset)]
|
||||
#![feature(const_black_box)]
|
||||
#![feature(const_eval_select)]
|
||||
#![feature(const_heap)]
|
||||
#![feature(const_nonnull_new)]
|
||||
#![feature(const_option_ext)]
|
||||
#![feature(const_pin_2)]
|
||||
#![feature(const_pointer_is_aligned)]
|
||||
#![feature(const_three_way_compare)]
|
||||
#![feature(const_trait_impl)]
|
||||
#![feature(core_intrinsics)]
|
||||
|
@ -359,22 +359,6 @@ fn align_offset_zst() {
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn align_offset_zst_const() {
|
||||
const {
|
||||
// For pointers of stride = 0, the pointer is already aligned or it cannot be aligned at
|
||||
// all, because no amount of elements will align the pointer.
|
||||
let mut p = 1;
|
||||
while p < 1024 {
|
||||
assert!(ptr::without_provenance::<()>(p).align_offset(p) == 0);
|
||||
if p != 1 {
|
||||
assert!(ptr::without_provenance::<()>(p + 1).align_offset(p) == !0);
|
||||
}
|
||||
p = (p + 1).next_power_of_two();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn align_offset_stride_one() {
|
||||
// For pointers of stride = 1, the pointer can always be aligned. The offset is equal to
|
||||
@ -396,25 +380,6 @@ fn align_offset_stride_one() {
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn align_offset_stride_one_const() {
|
||||
const {
|
||||
// For pointers of stride = 1, the pointer can always be aligned. The offset is equal to
|
||||
// number of bytes.
|
||||
let mut align = 1;
|
||||
while align < 1024 {
|
||||
let mut ptr = 1;
|
||||
while ptr < 2 * align {
|
||||
let expected = ptr % align;
|
||||
let offset = if expected == 0 { 0 } else { align - expected };
|
||||
assert!(ptr::without_provenance::<u8>(ptr).align_offset(align) == offset);
|
||||
ptr += 1;
|
||||
}
|
||||
align = (align + 1).next_power_of_two();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn align_offset_various_strides() {
|
||||
unsafe fn test_stride<T>(ptr: *const T, align: usize) -> bool {
|
||||
@ -495,192 +460,6 @@ struct A10(
|
||||
assert!(!x);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn align_offset_various_strides_const() {
|
||||
const unsafe fn test_stride<T>(ptr: *const T, numptr: usize, align: usize) {
|
||||
let mut expected = usize::MAX;
|
||||
// Naive but definitely correct way to find the *first* aligned element of stride::<T>.
|
||||
let mut el = 0;
|
||||
while el < align {
|
||||
if (numptr + el * ::std::mem::size_of::<T>()) % align == 0 {
|
||||
expected = el;
|
||||
break;
|
||||
}
|
||||
el += 1;
|
||||
}
|
||||
let got = ptr.align_offset(align);
|
||||
assert!(got == expected);
|
||||
}
|
||||
|
||||
const {
|
||||
// For pointers of stride != 1, we verify the algorithm against the naivest possible
|
||||
// implementation
|
||||
let mut align = 1;
|
||||
let limit = 32;
|
||||
while align < limit {
|
||||
let mut ptr = 1;
|
||||
while ptr < 4 * align {
|
||||
unsafe {
|
||||
#[repr(packed)]
|
||||
struct A3(#[allow(dead_code)] u16, #[allow(dead_code)] u8);
|
||||
test_stride::<A3>(ptr::without_provenance::<A3>(ptr), ptr, align);
|
||||
|
||||
struct A4(#[allow(dead_code)] u32);
|
||||
test_stride::<A4>(ptr::without_provenance::<A4>(ptr), ptr, align);
|
||||
|
||||
#[repr(packed)]
|
||||
struct A5(#[allow(dead_code)] u32, #[allow(dead_code)] u8);
|
||||
test_stride::<A5>(ptr::without_provenance::<A5>(ptr), ptr, align);
|
||||
|
||||
#[repr(packed)]
|
||||
struct A6(#[allow(dead_code)] u32, #[allow(dead_code)] u16);
|
||||
test_stride::<A6>(ptr::without_provenance::<A6>(ptr), ptr, align);
|
||||
|
||||
#[repr(packed)]
|
||||
struct A7(
|
||||
#[allow(dead_code)] u32,
|
||||
#[allow(dead_code)] u16,
|
||||
#[allow(dead_code)] u8,
|
||||
);
|
||||
test_stride::<A7>(ptr::without_provenance::<A7>(ptr), ptr, align);
|
||||
|
||||
#[repr(packed)]
|
||||
struct A8(#[allow(dead_code)] u32, #[allow(dead_code)] u32);
|
||||
test_stride::<A8>(ptr::without_provenance::<A8>(ptr), ptr, align);
|
||||
|
||||
#[repr(packed)]
|
||||
struct A9(
|
||||
#[allow(dead_code)] u32,
|
||||
#[allow(dead_code)] u32,
|
||||
#[allow(dead_code)] u8,
|
||||
);
|
||||
test_stride::<A9>(ptr::without_provenance::<A9>(ptr), ptr, align);
|
||||
|
||||
#[repr(packed)]
|
||||
struct A10(
|
||||
#[allow(dead_code)] u32,
|
||||
#[allow(dead_code)] u32,
|
||||
#[allow(dead_code)] u16,
|
||||
);
|
||||
test_stride::<A10>(ptr::without_provenance::<A10>(ptr), ptr, align);
|
||||
|
||||
test_stride::<u32>(ptr::without_provenance::<u32>(ptr), ptr, align);
|
||||
test_stride::<u128>(ptr::without_provenance::<u128>(ptr), ptr, align);
|
||||
}
|
||||
ptr += 1;
|
||||
}
|
||||
align = (align + 1).next_power_of_two();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn align_offset_with_provenance_const() {
|
||||
const {
|
||||
// On some platforms (e.g. msp430-none-elf), the alignment of `i32` is less than 4.
|
||||
#[repr(align(4))]
|
||||
struct AlignedI32(i32);
|
||||
|
||||
let data = AlignedI32(42);
|
||||
|
||||
// `stride % align == 0` (usual case)
|
||||
|
||||
let ptr: *const i32 = &data.0;
|
||||
assert!(ptr.align_offset(1) == 0);
|
||||
assert!(ptr.align_offset(2) == 0);
|
||||
assert!(ptr.align_offset(4) == 0);
|
||||
assert!(ptr.align_offset(8) == usize::MAX);
|
||||
assert!(ptr.wrapping_byte_add(1).align_offset(1) == 0);
|
||||
assert!(ptr.wrapping_byte_add(1).align_offset(2) == usize::MAX);
|
||||
assert!(ptr.wrapping_byte_add(2).align_offset(1) == 0);
|
||||
assert!(ptr.wrapping_byte_add(2).align_offset(2) == 0);
|
||||
assert!(ptr.wrapping_byte_add(2).align_offset(4) == usize::MAX);
|
||||
assert!(ptr.wrapping_byte_add(3).align_offset(1) == 0);
|
||||
assert!(ptr.wrapping_byte_add(3).align_offset(2) == usize::MAX);
|
||||
|
||||
assert!(ptr.wrapping_add(42).align_offset(4) == 0);
|
||||
assert!(ptr.wrapping_add(42).align_offset(8) == usize::MAX);
|
||||
|
||||
let ptr1: *const i8 = ptr.cast();
|
||||
assert!(ptr1.align_offset(1) == 0);
|
||||
assert!(ptr1.align_offset(2) == 0);
|
||||
assert!(ptr1.align_offset(4) == 0);
|
||||
assert!(ptr1.align_offset(8) == usize::MAX);
|
||||
assert!(ptr1.wrapping_byte_add(1).align_offset(1) == 0);
|
||||
assert!(ptr1.wrapping_byte_add(1).align_offset(2) == 1);
|
||||
assert!(ptr1.wrapping_byte_add(1).align_offset(4) == 3);
|
||||
assert!(ptr1.wrapping_byte_add(1).align_offset(8) == usize::MAX);
|
||||
assert!(ptr1.wrapping_byte_add(2).align_offset(1) == 0);
|
||||
assert!(ptr1.wrapping_byte_add(2).align_offset(2) == 0);
|
||||
assert!(ptr1.wrapping_byte_add(2).align_offset(4) == 2);
|
||||
assert!(ptr1.wrapping_byte_add(2).align_offset(8) == usize::MAX);
|
||||
assert!(ptr1.wrapping_byte_add(3).align_offset(1) == 0);
|
||||
assert!(ptr1.wrapping_byte_add(3).align_offset(2) == 1);
|
||||
assert!(ptr1.wrapping_byte_add(3).align_offset(4) == 1);
|
||||
assert!(ptr1.wrapping_byte_add(3).align_offset(8) == usize::MAX);
|
||||
|
||||
let ptr2: *const i16 = ptr.cast();
|
||||
assert!(ptr2.align_offset(1) == 0);
|
||||
assert!(ptr2.align_offset(2) == 0);
|
||||
assert!(ptr2.align_offset(4) == 0);
|
||||
assert!(ptr2.align_offset(8) == usize::MAX);
|
||||
assert!(ptr2.wrapping_byte_add(1).align_offset(1) == 0);
|
||||
assert!(ptr2.wrapping_byte_add(1).align_offset(2) == usize::MAX);
|
||||
assert!(ptr2.wrapping_byte_add(2).align_offset(1) == 0);
|
||||
assert!(ptr2.wrapping_byte_add(2).align_offset(2) == 0);
|
||||
assert!(ptr2.wrapping_byte_add(2).align_offset(4) == 1);
|
||||
assert!(ptr2.wrapping_byte_add(2).align_offset(8) == usize::MAX);
|
||||
assert!(ptr2.wrapping_byte_add(3).align_offset(1) == 0);
|
||||
assert!(ptr2.wrapping_byte_add(3).align_offset(2) == usize::MAX);
|
||||
|
||||
let ptr3: *const i64 = ptr.cast();
|
||||
assert!(ptr3.align_offset(1) == 0);
|
||||
assert!(ptr3.align_offset(2) == 0);
|
||||
assert!(ptr3.align_offset(4) == 0);
|
||||
assert!(ptr3.align_offset(8) == usize::MAX);
|
||||
assert!(ptr3.wrapping_byte_add(1).align_offset(1) == 0);
|
||||
assert!(ptr3.wrapping_byte_add(1).align_offset(2) == usize::MAX);
|
||||
|
||||
// `stride % align != 0` (edge case)
|
||||
|
||||
let ptr4: *const [u8; 3] = ptr.cast();
|
||||
assert!(ptr4.align_offset(1) == 0);
|
||||
assert!(ptr4.align_offset(2) == 0);
|
||||
assert!(ptr4.align_offset(4) == 0);
|
||||
assert!(ptr4.align_offset(8) == usize::MAX);
|
||||
assert!(ptr4.wrapping_byte_add(1).align_offset(1) == 0);
|
||||
assert!(ptr4.wrapping_byte_add(1).align_offset(2) == 1);
|
||||
assert!(ptr4.wrapping_byte_add(1).align_offset(4) == 1);
|
||||
assert!(ptr4.wrapping_byte_add(1).align_offset(8) == usize::MAX);
|
||||
assert!(ptr4.wrapping_byte_add(2).align_offset(1) == 0);
|
||||
assert!(ptr4.wrapping_byte_add(2).align_offset(2) == 0);
|
||||
assert!(ptr4.wrapping_byte_add(2).align_offset(4) == 2);
|
||||
assert!(ptr4.wrapping_byte_add(2).align_offset(8) == usize::MAX);
|
||||
assert!(ptr4.wrapping_byte_add(3).align_offset(1) == 0);
|
||||
assert!(ptr4.wrapping_byte_add(3).align_offset(2) == 1);
|
||||
assert!(ptr4.wrapping_byte_add(3).align_offset(4) == 3);
|
||||
assert!(ptr4.wrapping_byte_add(3).align_offset(8) == usize::MAX);
|
||||
|
||||
let ptr5: *const [u8; 5] = ptr.cast();
|
||||
assert!(ptr5.align_offset(1) == 0);
|
||||
assert!(ptr5.align_offset(2) == 0);
|
||||
assert!(ptr5.align_offset(4) == 0);
|
||||
assert!(ptr5.align_offset(8) == usize::MAX);
|
||||
assert!(ptr5.wrapping_byte_add(1).align_offset(1) == 0);
|
||||
assert!(ptr5.wrapping_byte_add(1).align_offset(2) == 1);
|
||||
assert!(ptr5.wrapping_byte_add(1).align_offset(4) == 3);
|
||||
assert!(ptr5.wrapping_byte_add(1).align_offset(8) == usize::MAX);
|
||||
assert!(ptr5.wrapping_byte_add(2).align_offset(1) == 0);
|
||||
assert!(ptr5.wrapping_byte_add(2).align_offset(2) == 0);
|
||||
assert!(ptr5.wrapping_byte_add(2).align_offset(4) == 2);
|
||||
assert!(ptr5.wrapping_byte_add(2).align_offset(8) == usize::MAX);
|
||||
assert!(ptr5.wrapping_byte_add(3).align_offset(1) == 0);
|
||||
assert!(ptr5.wrapping_byte_add(3).align_offset(2) == 1);
|
||||
assert!(ptr5.wrapping_byte_add(3).align_offset(4) == 1);
|
||||
assert!(ptr5.wrapping_byte_add(3).align_offset(8) == usize::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn align_offset_issue_103361() {
|
||||
#[cfg(target_pointer_width = "64")]
|
||||
@ -693,23 +472,6 @@ fn align_offset_issue_103361() {
|
||||
let _ = ptr::without_provenance::<HugeSize>(SIZE).align_offset(SIZE);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn align_offset_issue_103361_const() {
|
||||
#[cfg(target_pointer_width = "64")]
|
||||
const SIZE: usize = 1 << 47;
|
||||
#[cfg(target_pointer_width = "32")]
|
||||
const SIZE: usize = 1 << 30;
|
||||
#[cfg(target_pointer_width = "16")]
|
||||
const SIZE: usize = 1 << 13;
|
||||
struct HugeSize(#[allow(dead_code)] [u8; SIZE - 1]);
|
||||
|
||||
const {
|
||||
assert!(ptr::without_provenance::<HugeSize>(SIZE - 1).align_offset(SIZE) == SIZE - 1);
|
||||
assert!(ptr::without_provenance::<HugeSize>(SIZE).align_offset(SIZE) == 0);
|
||||
assert!(ptr::without_provenance::<HugeSize>(SIZE + 1).align_offset(SIZE) == 1);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn is_aligned() {
|
||||
let data = 42;
|
||||
@ -726,25 +488,6 @@ fn is_aligned() {
|
||||
assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn is_aligned_const() {
|
||||
const {
|
||||
let data = 42;
|
||||
let ptr: *const i32 = &data;
|
||||
assert!(ptr.is_aligned());
|
||||
assert!(ptr.is_aligned_to(1));
|
||||
assert!(ptr.is_aligned_to(2));
|
||||
assert!(ptr.is_aligned_to(4));
|
||||
assert!(ptr.wrapping_byte_add(2).is_aligned_to(1));
|
||||
assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
|
||||
assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
|
||||
|
||||
// At comptime neither `ptr` nor `ptr+1` is aligned to 8.
|
||||
assert!(!ptr.is_aligned_to(8));
|
||||
assert!(!ptr.wrapping_add(1).is_aligned_to(8));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn offset_from() {
|
||||
let mut a = [0; 5];
|
||||
|
Loading…
Reference in New Issue
Block a user