diff --git a/library/core/src/num/f16.rs b/library/core/src/num/f16.rs index 9252e8c6015..da92da1086d 100644 --- a/library/core/src/num/f16.rs +++ b/library/core/src/num/f16.rs @@ -435,6 +435,7 @@ pub const fn classify(self) -> FpCategory { // WASM, see llvm/llvm-project#96437). These are platforms bugs, and Rust will misbehave on // such platforms, but we can at least try to make things seem as sane as possible by being // careful here. + // see also https://github.com/rust-lang/rust/issues/114479 if self.is_infinite() { // Thus, a value may compare unequal to infinity, despite having a "full" exponent mask. FpCategory::Infinite diff --git a/library/core/src/num/f32.rs b/library/core/src/num/f32.rs index 2bc89722497..885f7608a33 100644 --- a/library/core/src/num/f32.rs +++ b/library/core/src/num/f32.rs @@ -662,10 +662,7 @@ pub const fn classify(self) -> FpCategory { // hardware flushes subnormals to zero. These are platforms bugs, and Rust will misbehave on // such hardware, but we can at least try to make things seem as sane as possible by being // careful here. - // - // FIXME(jubilee): Using x87 operations is never necessary in order to function - // on x86 processors for Rust-to-Rust calls, so this issue should not happen. - // Code generation should be adjusted to use non-C calling conventions, avoiding this. + // see also https://github.com/rust-lang/rust/issues/114479 if self.is_infinite() { // A value may compare unequal to infinity, despite having a "full" exponent mask. FpCategory::Infinite diff --git a/library/core/src/num/f64.rs b/library/core/src/num/f64.rs index b3f5be9fc8a..28cc231ccc7 100644 --- a/library/core/src/num/f64.rs +++ b/library/core/src/num/f64.rs @@ -660,10 +660,7 @@ pub const fn classify(self) -> FpCategory { // float semantics Rust relies on: x87 uses a too-large exponent, and some hardware flushes // subnormals to zero. These are platforms bugs, and Rust will misbehave on such hardware, // but we can at least try to make things seem as sane as possible by being careful here. - // - // FIXME(jubilee): Using x87 operations is never necessary in order to function - // on x86 processors for Rust-to-Rust calls, so this issue should not happen. - // Code generation should be adjusted to use non-C calling conventions, avoiding this. + // see also https://github.com/rust-lang/rust/issues/114479 // // Thus, a value may compare unequal to infinity, despite having a "full" exponent mask. // And it may not be NaN, as it can simply be an "overextended" finite value. diff --git a/library/std/src/f32/tests.rs b/library/std/src/f32/tests.rs index 3a4c1c120a4..99cfcfb231d 100644 --- a/library/std/src/f32/tests.rs +++ b/library/std/src/f32/tests.rs @@ -2,31 +2,24 @@ use crate::num::{FpCategory as Fp, *}; /// Smallest number -#[allow(dead_code)] // unused on x86 const TINY_BITS: u32 = 0x1; /// Next smallest number -#[allow(dead_code)] // unused on x86 const TINY_UP_BITS: u32 = 0x2; /// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 -#[allow(dead_code)] // unused on x86 const MAX_DOWN_BITS: u32 = 0x7f7f_fffe; /// Zeroed exponent, full significant -#[allow(dead_code)] // unused on x86 const LARGEST_SUBNORMAL_BITS: u32 = 0x007f_ffff; /// Exponent = 0b1, zeroed significand -#[allow(dead_code)] // unused on x86 const SMALLEST_NORMAL_BITS: u32 = 0x0080_0000; /// First pattern over the mantissa -#[allow(dead_code)] // unused on x86 const NAN_MASK1: u32 = 0x002a_aaaa; /// Second pattern over the mantissa -#[allow(dead_code)] // unused on x86 const NAN_MASK2: u32 = 0x0055_5555; #[allow(unused_macros)] @@ -353,9 +346,6 @@ fn test_is_sign_negative() { assert!((-f32::NAN).is_sign_negative()); } -// Ignore test on x87 floating point, these platforms do not guarantee NaN -// payloads are preserved and flush denormals to zero, failing the tests. -#[cfg(not(target_arch = "x86"))] #[test] fn test_next_up() { let tiny = f32::from_bits(TINY_BITS); @@ -386,9 +376,6 @@ fn test_next_up() { assert_f32_biteq!(nan2.next_up(), nan2); } -// Ignore test on x87 floating point, these platforms do not guarantee NaN -// payloads are preserved and flush denormals to zero, failing the tests. -#[cfg(not(target_arch = "x86"))] #[test] fn test_next_down() { let tiny = f32::from_bits(TINY_BITS); diff --git a/library/std/src/f64/tests.rs b/library/std/src/f64/tests.rs index bac8405f973..3fac2efe0d7 100644 --- a/library/std/src/f64/tests.rs +++ b/library/std/src/f64/tests.rs @@ -2,31 +2,24 @@ use crate::num::{FpCategory as Fp, *}; /// Smallest number -#[allow(dead_code)] // unused on x86 const TINY_BITS: u64 = 0x1; /// Next smallest number -#[allow(dead_code)] // unused on x86 const TINY_UP_BITS: u64 = 0x2; /// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 -#[allow(dead_code)] // unused on x86 const MAX_DOWN_BITS: u64 = 0x7fef_ffff_ffff_fffe; /// Zeroed exponent, full significant -#[allow(dead_code)] // unused on x86 const LARGEST_SUBNORMAL_BITS: u64 = 0x000f_ffff_ffff_ffff; /// Exponent = 0b1, zeroed significand -#[allow(dead_code)] // unused on x86 const SMALLEST_NORMAL_BITS: u64 = 0x0010_0000_0000_0000; /// First pattern over the mantissa -#[allow(dead_code)] // unused on x86 const NAN_MASK1: u64 = 0x000a_aaaa_aaaa_aaaa; /// Second pattern over the mantissa -#[allow(dead_code)] // unused on x86 const NAN_MASK2: u64 = 0x0005_5555_5555_5555; #[allow(unused_macros)] @@ -343,9 +336,6 @@ fn test_is_sign_negative() { assert!((-f64::NAN).is_sign_negative()); } -// Ignore test on x87 floating point, these platforms do not guarantee NaN -// payloads are preserved and flush denormals to zero, failing the tests. -#[cfg(not(target_arch = "x86"))] #[test] fn test_next_up() { let tiny = f64::from_bits(TINY_BITS); @@ -375,9 +365,6 @@ fn test_next_up() { assert_f64_biteq!(nan2.next_up(), nan2); } -// Ignore test on x87 floating point, these platforms do not guarantee NaN -// payloads are preserved and flush denormals to zero, failing the tests. -#[cfg(not(target_arch = "x86"))] #[test] fn test_next_down() { let tiny = f64::from_bits(TINY_BITS); diff --git a/tests/ui/consts/const-float-bits-conv.rs b/tests/ui/consts/const-float-bits-conv.rs deleted file mode 100644 index 869498d1076..00000000000 --- a/tests/ui/consts/const-float-bits-conv.rs +++ /dev/null @@ -1,161 +0,0 @@ -//@ compile-flags: -Zmir-opt-level=0 -//@ run-pass - -#![feature(const_float_classify)] -#![feature(f16, f16_const)] -#![feature(f128, f128_const)] -#![allow(unused_macro_rules)] -// Don't promote -const fn nop(x: T) -> T { x } - -macro_rules! const_assert { - ($a:expr) => { - { - const _: () = assert!($a); - assert!(nop($a)); - } - }; - ($a:expr, $b:expr) => { - { - const _: () = assert!($a == $b); - assert_eq!(nop($a), nop($b)); - } - }; -} - -fn has_broken_floats() -> bool { - // i586 targets are broken due to . - std::env::var("TARGET").is_ok_and(|v| v.contains("i586")) -} - -#[cfg(target_arch = "x86_64")] -fn f16(){ - const_assert!((1f16).to_bits(), 0x3c00); - const_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00); - const_assert!((12.5f16).to_bits(), 0x4a40); - const_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40); - const_assert!((1337f16).to_bits(), 0x6539); - const_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539); - const_assert!((-14.25f16).to_bits(), 0xcb20); - const_assert!(f16::from_bits(0x3c00), 1.0); - const_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0); - const_assert!(f16::from_bits(0x4a40), 12.5); - const_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5); - const_assert!(f16::from_bits(0x5be0), 252.0); - const_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0); - const_assert!(f16::from_bits(0xcb20), -14.25); - - // Check that NaNs roundtrip their bits regardless of signalingness - // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits - // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! - const QUIET_NAN: u16 = f16::NAN.to_bits() ^ 0x0155; - const SIGNALING_NAN: u16 = f16::NAN.to_bits() ^ 0x02AA; - - const_assert!(f16::from_bits(QUIET_NAN).is_nan()); - const_assert!(f16::from_bits(SIGNALING_NAN).is_nan()); - const_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); - if !has_broken_floats() { - const_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); - } -} - -fn f32() { - const_assert!((1f32).to_bits(), 0x3f800000); - const_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000); - const_assert!((12.5f32).to_bits(), 0x41480000); - const_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000); - const_assert!((1337f32).to_bits(), 0x44a72000); - const_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000); - const_assert!((-14.25f32).to_bits(), 0xc1640000); - const_assert!(f32::from_bits(0x3f800000), 1.0); - const_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0); - const_assert!(f32::from_bits(0x41480000), 12.5); - const_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5); - const_assert!(f32::from_bits(0x44a72000), 1337.0); - const_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0); - const_assert!(f32::from_bits(0xc1640000), -14.25); - - // Check that NaNs roundtrip their bits regardless of signalingness - // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits - // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! - const QUIET_NAN: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA; - const SIGNALING_NAN: u32 = f32::NAN.to_bits() ^ 0x0055_5555; - - const_assert!(f32::from_bits(QUIET_NAN).is_nan()); - const_assert!(f32::from_bits(SIGNALING_NAN).is_nan()); - const_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); - if !has_broken_floats() { - const_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); - } -} - -fn f64() { - const_assert!((1f64).to_bits(), 0x3ff0000000000000); - const_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000); - const_assert!((12.5f64).to_bits(), 0x4029000000000000); - const_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000); - const_assert!((1337f64).to_bits(), 0x4094e40000000000); - const_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000); - const_assert!((-14.25f64).to_bits(), 0xc02c800000000000); - const_assert!(f64::from_bits(0x3ff0000000000000), 1.0); - const_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0); - const_assert!(f64::from_bits(0x4029000000000000), 12.5); - const_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5); - const_assert!(f64::from_bits(0x4094e40000000000), 1337.0); - const_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0); - const_assert!(f64::from_bits(0xc02c800000000000), -14.25); - - // Check that NaNs roundtrip their bits regardless of signalingness - // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits - // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! - const QUIET_NAN: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555; - const SIGNALING_NAN: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA; - - const_assert!(f64::from_bits(QUIET_NAN).is_nan()); - const_assert!(f64::from_bits(SIGNALING_NAN).is_nan()); - const_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); - if !has_broken_floats() { - const_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); - } -} - -#[cfg(target_arch = "x86_64")] -fn f128() { - const_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000); - const_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000); - const_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000); - const_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000); - const_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000); - const_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000); - const_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000); - const_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0); - const_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0); - const_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5); - const_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5); - const_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0); - assert_eq!(f128::from_ne_bytes(0x40094e40000000000000000000000000u128.to_ne_bytes()), 1337.0); - const_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25); - - // Check that NaNs roundtrip their bits regardless of signalingness - // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits - // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! - const QUIET_NAN: u128 = f128::NAN.to_bits() | 0x0000_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA; - const SIGNALING_NAN: u128 = f128::NAN.to_bits() ^ 0x0000_5555_5555_5555_5555_5555_5555_5555; - - const_assert!(f128::from_bits(QUIET_NAN).is_nan()); - const_assert!(f128::from_bits(SIGNALING_NAN).is_nan()); - const_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); - if !has_broken_floats() { - const_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); - } -} - -fn main() { - #[cfg(target_arch = "x86_64")] - { - f16(); - f128(); - } - f32(); - f64(); -} diff --git a/tests/ui/consts/const-float-classify.rs b/tests/ui/consts/const-float-classify.rs deleted file mode 100644 index 6e5097f7f2b..00000000000 --- a/tests/ui/consts/const-float-classify.rs +++ /dev/null @@ -1,76 +0,0 @@ -//@ compile-flags: -Zmir-opt-level=0 -Znext-solver -//@ known-bug: #110395 -// FIXME(effects) run-pass - -#![feature(const_float_classify)] -#![feature(const_trait_impl, effects)] -#![allow(incomplete_features)] - -// Don't promote -const fn nop(x: T) -> T { x } - -impl const PartialEq for bool { - fn eq(&self, _: &NonDet) -> bool { - true - } -} - -macro_rules! const_assert { - ($a:expr, $b:expr) => { - { - const _: () = assert!($a == $b); - assert!(nop($a) == nop($b)); - } - }; -} - -macro_rules! suite { - ( $( $tt:tt )* ) => { - fn f32() { - suite_inner!(f32 $($tt)*); - } - - fn f64() { - suite_inner!(f64 $($tt)*); - } - } - -} - -macro_rules! suite_inner { - ( - $ty:ident [$( $fn:ident ),*] - $val:expr => [$($out:ident),*] - - $( $tail:tt )* - ) => { - $( const_assert!($ty::$fn($val), $out); )* - suite_inner!($ty [$($fn),*] $($tail)*) - }; - - ( $ty:ident [$( $fn:ident ),*]) => {}; -} - -#[derive(Debug)] -struct NonDet; - -// The result of the `is_sign` methods are not checked for correctness, since LLVM does not -// guarantee anything about the signedness of NaNs. See -// https://github.com/rust-lang/rust/issues/55131. - -suite! { - [is_nan, is_infinite, is_finite, is_normal, is_sign_positive, is_sign_negative] - -0.0 / 0.0 => [ true, false, false, false, NonDet, NonDet] - 0.0 / 0.0 => [ true, false, false, false, NonDet, NonDet] - 1.0 => [ false, false, true, true, true, false] - -1.0 => [ false, false, true, true, false, true] - 0.0 => [ false, false, true, false, true, false] - -0.0 => [ false, false, true, false, false, true] - 1.0 / 0.0 => [ false, true, false, false, true, false] - -1.0 / 0.0 => [ false, true, false, false, false, true] -} - -fn main() { - f32(); - f64(); -} diff --git a/tests/ui/consts/const-float-classify.stderr b/tests/ui/consts/const-float-classify.stderr deleted file mode 100644 index a35de8ad0ea..00000000000 --- a/tests/ui/consts/const-float-classify.stderr +++ /dev/null @@ -1,11 +0,0 @@ -error: const `impl` for trait `PartialEq` which is not marked with `#[const_trait]` - --> $DIR/const-float-classify.rs:12:12 - | -LL | impl const PartialEq for bool { - | ^^^^^^^^^^^^^^^^^ - | - = note: marking a trait with `#[const_trait]` ensures all default method bodies are `const` - = note: adding a non-const method body in the future would be a breaking change - -error: aborting due to 1 previous error - diff --git a/tests/ui/float/classify-runtime-const.rs b/tests/ui/float/classify-runtime-const.rs new file mode 100644 index 00000000000..59a232c255e --- /dev/null +++ b/tests/ui/float/classify-runtime-const.rs @@ -0,0 +1,82 @@ +//@ compile-flags: -Zmir-opt-level=0 -Znext-solver +//@ run-pass +// ignore-tidy-linelength + +// This tests the float classification functions, for regular runtime code and for const evaluation. + +#![feature(f16_const)] +#![feature(f128_const)] +#![feature(const_float_classify)] + +use std::hint::black_box; +use std::num::FpCategory::*; + +macro_rules! both_assert { + ($a:expr, NonDet) => { + { + // Compute `a`, but do not compare with anything as the result is non-deterministic. + const _: () = { let _val = $a; }; + // `black_box` prevents promotion, and MIR opts are disabled above, so this is truly + // going through LLVM. + let _val = black_box($a); + } + }; + ($a:expr, $b:ident) => { + { + const _: () = assert!(matches!($a, $b)); + assert!(black_box($a) == black_box($b)); + } + }; +} + +macro_rules! suite { + ( $tyname:ident: $( $tt:tt )* ) => { + fn f32() { + type $tyname = f32; + suite_inner!(f32 $($tt)*); + } + + fn f64() { + type $tyname = f64; + suite_inner!(f64 $($tt)*); + } + } +} + +macro_rules! suite_inner { + ( + $ty:ident [$( $fn:ident ),*] + $val:expr => [$($out:ident),*] + + $( $tail:tt )* + ) => { + $( both_assert!($ty::$fn($val), $out); )* + suite_inner!($ty [$($fn),*] $($tail)*) + }; + + ( $ty:ident [$( $fn:ident ),*]) => {}; +} + +// The result of the `is_sign` methods are not checked for correctness, since we do not +// guarantee anything about the signedness of NaNs. See +// https://rust-lang.github.io/rfcs/3514-float-semantics.html. + +suite! { T: // type alias for the type we are testing + [ classify, is_nan, is_infinite, is_finite, is_normal, is_sign_positive, is_sign_negative] + -0.0 / 0.0 => [ Nan, true, false, false, false, NonDet, NonDet] + 0.0 / 0.0 => [ Nan, true, false, false, false, NonDet, NonDet] + 1.0 => [ Normal, false, false, true, true, true, false] + -1.0 => [ Normal, false, false, true, true, false, true] + 0.0 => [ Zero, false, false, true, false, true, false] + -0.0 => [ Zero, false, false, true, false, false, true] + 1.0 / 0.0 => [ Infinite, false, true, false, false, true, false] + -1.0 / 0.0 => [ Infinite, false, true, false, false, false, true] + 1.0 / T::MAX => [Subnormal, false, false, true, false, true, false] + -1.0 / T::MAX => [Subnormal, false, false, true, false, false, true] +} + +fn main() { + f32(); + f64(); + // FIXME(f16_f128): also test f16 and f128 +} diff --git a/tests/ui/float/conv-bits-runtime-const.rs b/tests/ui/float/conv-bits-runtime-const.rs new file mode 100644 index 00000000000..e85a889d2c2 --- /dev/null +++ b/tests/ui/float/conv-bits-runtime-const.rs @@ -0,0 +1,168 @@ +//@ compile-flags: -Zmir-opt-level=0 +//@ run-pass + +// This tests the float classification functions, for regular runtime code and for const evaluation. + +#![feature(const_float_classify)] +#![feature(f16)] +#![feature(f128)] +#![feature(f16_const)] +#![feature(f128_const)] +#![allow(unused_macro_rules)] + +use std::hint::black_box; + +macro_rules! both_assert { + ($a:expr) => { + { + const _: () = assert!($a); + // `black_box` prevents promotion, and MIR opts are disabled above, so this is truly + // going through LLVM. + assert!(black_box($a)); + } + }; + ($a:expr, $b:expr) => { + { + const _: () = assert!($a == $b); + assert_eq!(black_box($a), black_box($b)); + } + }; +} + +fn has_broken_floats() -> bool { + // i586 targets are broken due to . + cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) +} + +#[cfg(target_arch = "x86_64")] +fn f16(){ + both_assert!((1f16).to_bits(), 0x3c00); + both_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00); + both_assert!((12.5f16).to_bits(), 0x4a40); + both_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40); + both_assert!((1337f16).to_bits(), 0x6539); + both_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539); + both_assert!((-14.25f16).to_bits(), 0xcb20); + both_assert!(f16::from_bits(0x3c00), 1.0); + both_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0); + both_assert!(f16::from_bits(0x4a40), 12.5); + both_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5); + both_assert!(f16::from_bits(0x5be0), 252.0); + both_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0); + both_assert!(f16::from_bits(0xcb20), -14.25); + + // Check that NaNs roundtrip their bits regardless of signalingness + // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits + // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! + const QUIET_NAN: u16 = f16::NAN.to_bits() ^ 0x0155; + const SIGNALING_NAN: u16 = f16::NAN.to_bits() ^ 0x02AA; + + both_assert!(f16::from_bits(QUIET_NAN).is_nan()); + both_assert!(f16::from_bits(SIGNALING_NAN).is_nan()); + both_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); + if !has_broken_floats() { + both_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); + } +} + +fn f32() { + both_assert!((1f32).to_bits(), 0x3f800000); + both_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000); + both_assert!((12.5f32).to_bits(), 0x41480000); + both_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000); + both_assert!((1337f32).to_bits(), 0x44a72000); + both_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000); + both_assert!((-14.25f32).to_bits(), 0xc1640000); + both_assert!(f32::from_bits(0x3f800000), 1.0); + both_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0); + both_assert!(f32::from_bits(0x41480000), 12.5); + both_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5); + both_assert!(f32::from_bits(0x44a72000), 1337.0); + both_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0); + both_assert!(f32::from_bits(0xc1640000), -14.25); + + // Check that NaNs roundtrip their bits regardless of signalingness + // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits + // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! + const QUIET_NAN: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA; + const SIGNALING_NAN: u32 = f32::NAN.to_bits() ^ 0x0055_5555; + + both_assert!(f32::from_bits(QUIET_NAN).is_nan()); + both_assert!(f32::from_bits(SIGNALING_NAN).is_nan()); + both_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); + if !has_broken_floats() { + both_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); + } +} + +fn f64() { + both_assert!((1f64).to_bits(), 0x3ff0000000000000); + both_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000); + both_assert!((12.5f64).to_bits(), 0x4029000000000000); + both_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000); + both_assert!((1337f64).to_bits(), 0x4094e40000000000); + both_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000); + both_assert!((-14.25f64).to_bits(), 0xc02c800000000000); + both_assert!(f64::from_bits(0x3ff0000000000000), 1.0); + both_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0); + both_assert!(f64::from_bits(0x4029000000000000), 12.5); + both_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5); + both_assert!(f64::from_bits(0x4094e40000000000), 1337.0); + both_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0); + both_assert!(f64::from_bits(0xc02c800000000000), -14.25); + + // Check that NaNs roundtrip their bits regardless of signalingness + // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits + // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! + const QUIET_NAN: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555; + const SIGNALING_NAN: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA; + + both_assert!(f64::from_bits(QUIET_NAN).is_nan()); + both_assert!(f64::from_bits(SIGNALING_NAN).is_nan()); + both_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); + if !has_broken_floats() { + both_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); + } +} + +#[cfg(target_arch = "x86_64")] +fn f128() { + both_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000); + both_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000); + both_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000); + both_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000); + both_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000); + both_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000); + both_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000); + both_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0); + both_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0); + both_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5); + both_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5); + both_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0); + assert_eq!(f128::from_ne_bytes(0x40094e40000000000000000000000000u128.to_ne_bytes()), 1337.0); + both_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25); + + // Check that NaNs roundtrip their bits regardless of signalingness + // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits + // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! + const QUIET_NAN: u128 = f128::NAN.to_bits() | 0x0000_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA; + const SIGNALING_NAN: u128 = f128::NAN.to_bits() ^ 0x0000_5555_5555_5555_5555_5555_5555_5555; + + both_assert!(f128::from_bits(QUIET_NAN).is_nan()); + both_assert!(f128::from_bits(SIGNALING_NAN).is_nan()); + both_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); + if !has_broken_floats() { + both_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); + } +} + +fn main() { + f32(); + f64(); + + #[cfg(target_arch = "x86_64")] + { + f16(); + f128(); + } +} diff --git a/tests/ui/numbers-arithmetic/issue-105626.rs b/tests/ui/numbers-arithmetic/issue-105626.rs index f942cf1283d..8d4a7c308e7 100644 --- a/tests/ui/numbers-arithmetic/issue-105626.rs +++ b/tests/ui/numbers-arithmetic/issue-105626.rs @@ -11,6 +11,7 @@ fn main() { assert_ne!((n as f64) as f32, n as f32); // FIXME: these assertions fail if only x87 is enabled + // see also https://github.com/rust-lang/rust/issues/114479 assert_eq!(n as i64 as f32, r); assert_eq!(n as u64 as f32, r); }