Auto merge of #119735 - lcnr:provisional-cache-readd, r=compiler-errors

next solver: provisional cache

this adds the cache removed in #115843. However, it should now correctly track whether a provisional result depends on an inductive or coinductive stack.

While working on this, I was using the following doc: https://hackmd.io/VsQPjW3wSTGUSlmgwrDKOA. I don't think it's too helpful to understanding this, but am somewhat hopeful that the inline comments are more useful.

There are quite a few future perf improvements here. Given that this is already very involved I don't believe it is worth it (for now). While working on this PR one of my few attempts to significantly improve perf ended up being unsound again because I was not careful enough 

r? `@compiler-errors`
This commit is contained in:
bors 2024-01-12 07:04:42 +00:00
commit 2b1365b34f
13 changed files with 449 additions and 115 deletions

View File

@ -4574,6 +4574,7 @@ checksum = "8ba09476327c4b70ccefb6180f046ef588c26a24cf5d269a9feba316eb4f029f"
name = "rustc_trait_selection"
version = "0.0.0"
dependencies = [
"bitflags 2.4.1",
"itertools",
"rustc_ast",
"rustc_attr",

View File

@ -73,6 +73,7 @@ pub struct CanonicalGoalEvaluation<'tcx> {
pub enum CanonicalGoalEvaluationKind<'tcx> {
Overflow,
CycleInStack,
ProvisionalCacheHit,
Evaluation { revisions: &'tcx [GoalEvaluationStep<'tcx>] },
}
impl Debug for GoalEvaluation<'_> {

View File

@ -77,6 +77,9 @@ pub(super) fn format_canonical_goal_evaluation(
CanonicalGoalEvaluationKind::CycleInStack => {
writeln!(self.f, "CYCLE IN STACK: {:?}", eval.result)
}
CanonicalGoalEvaluationKind::ProvisionalCacheHit => {
writeln!(self.f, "PROVISIONAL CACHE HIT: {:?}", eval.result)
}
CanonicalGoalEvaluationKind::Evaluation { revisions } => {
for (n, step) in revisions.iter().enumerate() {
writeln!(self.f, "REVISION {n}")?;

View File

@ -5,6 +5,7 @@ edition = "2021"
[dependencies]
# tidy-alphabetical-start
bitflags = "2.4.1"
itertools = "0.11.0"
rustc_ast = { path = "../rustc_ast" }
rustc_attr = { path = "../rustc_attr" }

View File

@ -19,6 +19,7 @@
#![feature(control_flow_enum)]
#![feature(extract_if)]
#![feature(let_chains)]
#![feature(option_take_if)]
#![feature(if_let_guard)]
#![feature(never_type)]
#![feature(type_alias_impl_trait)]

View File

@ -171,7 +171,8 @@ pub fn candidates(&'a self) -> Vec<InspectCandidate<'a, 'tcx>> {
let mut candidates = vec![];
let last_eval_step = match self.evaluation.evaluation.kind {
inspect::CanonicalGoalEvaluationKind::Overflow
| inspect::CanonicalGoalEvaluationKind::CycleInStack => {
| inspect::CanonicalGoalEvaluationKind::CycleInStack
| inspect::CanonicalGoalEvaluationKind::ProvisionalCacheHit => {
warn!("unexpected root evaluation: {:?}", self.evaluation);
return vec![];
}

View File

@ -118,6 +118,7 @@ pub(in crate::solve) enum WipGoalEvaluationKind<'tcx> {
pub(in crate::solve) enum WipCanonicalGoalEvaluationKind<'tcx> {
Overflow,
CycleInStack,
ProvisionalCacheHit,
Interned { revisions: &'tcx [inspect::GoalEvaluationStep<'tcx>] },
}
@ -126,6 +127,7 @@ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Overflow => write!(f, "Overflow"),
Self::CycleInStack => write!(f, "CycleInStack"),
Self::ProvisionalCacheHit => write!(f, "ProvisionalCacheHit"),
Self::Interned { revisions: _ } => f.debug_struct("Interned").finish_non_exhaustive(),
}
}
@ -151,6 +153,9 @@ fn finalize(self) -> inspect::CanonicalGoalEvaluation<'tcx> {
WipCanonicalGoalEvaluationKind::CycleInStack => {
inspect::CanonicalGoalEvaluationKind::CycleInStack
}
WipCanonicalGoalEvaluationKind::ProvisionalCacheHit => {
inspect::CanonicalGoalEvaluationKind::ProvisionalCacheHit
}
WipCanonicalGoalEvaluationKind::Interned { revisions } => {
inspect::CanonicalGoalEvaluationKind::Evaluation { revisions }
}

View File

@ -11,29 +11,100 @@
use rustc_middle::ty;
use rustc_middle::ty::TyCtxt;
use rustc_session::Limit;
use std::collections::hash_map::Entry;
use std::mem;
rustc_index::newtype_index! {
#[orderable]
pub struct StackDepth {}
}
bitflags::bitflags! {
/// Whether and how this goal has been used as the root of a
/// cycle. We track the kind of cycle as we're otherwise forced
/// to always rerun at least once.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
struct HasBeenUsed: u8 {
const INDUCTIVE_CYCLE = 1 << 0;
const COINDUCTIVE_CYCLE = 1 << 1;
}
}
#[derive(Debug)]
struct StackEntry<'tcx> {
input: CanonicalInput<'tcx>,
available_depth: Limit,
// The maximum depth reached by this stack entry, only up-to date
// for the top of the stack and lazily updated for the rest.
/// The maximum depth reached by this stack entry, only up-to date
/// for the top of the stack and lazily updated for the rest.
reached_depth: StackDepth,
// In case of a cycle, the depth of the root.
cycle_root_depth: StackDepth,
/// Whether this entry is a non-root cycle participant.
///
/// We must not move the result of non-root cycle participants to the
/// global cache. See [SearchGraph::cycle_participants] for more details.
/// We store the highest stack depth of a head of a cycle this goal is involved
/// in. This necessary to soundly cache its provisional result.
non_root_cycle_participant: Option<StackDepth>,
encountered_overflow: bool,
has_been_used: bool,
has_been_used: HasBeenUsed,
/// Starts out as `None` and gets set when rerunning this
/// goal in case we encounter a cycle.
provisional_result: Option<QueryResult<'tcx>>,
}
/// The provisional result for a goal which is not on the stack.
struct DetachedEntry<'tcx> {
/// The head of the smallest non-trivial cycle involving this entry.
///
/// Given the following rules, when proving `A` the head for
/// the provisional entry of `C` would be `B`.
/// ```plain
/// A :- B
/// B :- C
/// C :- A + B + C
/// ```
head: StackDepth,
result: QueryResult<'tcx>,
}
/// Stores the stack depth of a currently evaluated goal *and* already
/// computed results for goals which depend on other goals still on the stack.
///
/// The provisional result may depend on whether the stack above it is inductive
/// or coinductive. Because of this, we store separate provisional results for
/// each case. If an provisional entry is not applicable, it may be the case
/// that we already have provisional result while computing a goal. In this case
/// we prefer the provisional result to potentially avoid fixpoint iterations.
/// See tests/ui/traits/next-solver/cycles/mixed-cycles-2.rs for an example.
///
/// The provisional cache can theoretically result in changes to the observable behavior,
/// see tests/ui/traits/next-solver/cycles/provisional-cache-impacts-behavior.rs.
#[derive(Default)]
struct ProvisionalCacheEntry<'tcx> {
stack_depth: Option<StackDepth>,
with_inductive_stack: Option<DetachedEntry<'tcx>>,
with_coinductive_stack: Option<DetachedEntry<'tcx>>,
}
impl<'tcx> ProvisionalCacheEntry<'tcx> {
fn is_empty(&self) -> bool {
self.stack_depth.is_none()
&& self.with_inductive_stack.is_none()
&& self.with_coinductive_stack.is_none()
}
}
pub(super) struct SearchGraph<'tcx> {
mode: SolverMode,
local_overflow_limit: usize,
/// The stack of goals currently being computed.
///
/// An element is *deeper* in the stack if its index is *lower*.
stack: IndexVec<StackDepth, StackEntry<'tcx>>,
provisional_cache: FxHashMap<CanonicalInput<'tcx>, ProvisionalCacheEntry<'tcx>>,
/// We put only the root goal of a coinductive cycle into the global cache.
///
/// If we were to use that result when later trying to prove another cycle
@ -44,23 +115,14 @@ struct StackEntry<'tcx> {
cycle_participants: FxHashSet<CanonicalInput<'tcx>>,
}
pub(super) struct SearchGraph<'tcx> {
mode: SolverMode,
local_overflow_limit: usize,
/// The stack of goals currently being computed.
///
/// An element is *deeper* in the stack if its index is *lower*.
stack: IndexVec<StackDepth, StackEntry<'tcx>>,
stack_entries: FxHashMap<CanonicalInput<'tcx>, StackDepth>,
}
impl<'tcx> SearchGraph<'tcx> {
pub(super) fn new(tcx: TyCtxt<'tcx>, mode: SolverMode) -> SearchGraph<'tcx> {
Self {
mode,
local_overflow_limit: tcx.recursion_limit().0.checked_ilog2().unwrap_or(0) as usize,
stack: Default::default(),
stack_entries: Default::default(),
provisional_cache: Default::default(),
cycle_participants: Default::default(),
}
}
@ -89,7 +151,6 @@ fn on_cache_hit(&mut self, additional_depth: usize, encountered_overflow: bool)
/// would cause us to not track overflow and recursion depth correctly.
fn pop_stack(&mut self) -> StackEntry<'tcx> {
let elem = self.stack.pop().unwrap();
assert!(self.stack_entries.remove(&elem.input).is_some());
if let Some(last) = self.stack.raw.last_mut() {
last.reached_depth = last.reached_depth.max(elem.reached_depth);
last.encountered_overflow |= elem.encountered_overflow;
@ -109,7 +170,13 @@ pub(super) fn global_cache(&self, tcx: TyCtxt<'tcx>) -> &'tcx EvaluationCache<'t
}
pub(super) fn is_empty(&self) -> bool {
self.stack.is_empty()
if self.stack.is_empty() {
debug_assert!(self.provisional_cache.is_empty());
debug_assert!(self.cycle_participants.is_empty());
true
} else {
false
}
}
pub(super) fn current_goal_is_normalizes_to(&self) -> bool {
@ -146,6 +213,52 @@ fn allowed_depth_for_nested(
}
}
fn stack_coinductive_from(
tcx: TyCtxt<'tcx>,
stack: &IndexVec<StackDepth, StackEntry<'tcx>>,
head: StackDepth,
) -> bool {
stack.raw[head.index()..]
.iter()
.all(|entry| entry.input.value.goal.predicate.is_coinductive(tcx))
}
// When encountering a solver cycle, the result of the current goal
// depends on goals lower on the stack.
//
// We have to therefore be careful when caching goals. Only the final result
// of the cycle root, i.e. the lowest goal on the stack involved in this cycle,
// is moved to the global cache while all others are stored in a provisional cache.
//
// We update both the head of this cycle to rerun its evaluation until
// we reach a fixpoint and all other cycle participants to make sure that
// their result does not get moved to the global cache.
fn tag_cycle_participants(
stack: &mut IndexVec<StackDepth, StackEntry<'tcx>>,
cycle_participants: &mut FxHashSet<CanonicalInput<'tcx>>,
usage_kind: HasBeenUsed,
head: StackDepth,
) {
stack[head].has_been_used |= usage_kind;
debug_assert!(!stack[head].has_been_used.is_empty());
for entry in &mut stack.raw[head.index() + 1..] {
entry.non_root_cycle_participant = entry.non_root_cycle_participant.max(Some(head));
cycle_participants.insert(entry.input);
}
}
fn clear_dependent_provisional_results(
provisional_cache: &mut FxHashMap<CanonicalInput<'tcx>, ProvisionalCacheEntry<'tcx>>,
head: StackDepth,
) {
#[allow(rustc::potential_query_instability)]
provisional_cache.retain(|_, entry| {
entry.with_coinductive_stack.take_if(|p| p.head == head);
entry.with_inductive_stack.take_if(|p| p.head == head);
!entry.is_empty()
});
}
/// Probably the most involved method of the whole solver.
///
/// Given some goal which is proven via the `prove_goal` closure, this
@ -200,82 +313,79 @@ pub(super) fn with_new_goal(
return result;
}
// Check whether we're in a cycle.
match self.stack_entries.entry(input) {
// Check whether the goal is in the provisional cache.
// The provisional result may rely on the path to its cycle roots,
// so we have to check the path of the current goal matches that of
// the cache entry.
let cache_entry = self.provisional_cache.entry(input).or_default();
if let Some(entry) = cache_entry
.with_coinductive_stack
.as_ref()
.filter(|p| Self::stack_coinductive_from(tcx, &self.stack, p.head))
.or_else(|| {
cache_entry
.with_inductive_stack
.as_ref()
.filter(|p| !Self::stack_coinductive_from(tcx, &self.stack, p.head))
})
{
// We have a nested goal which is already in the provisional cache, use
// its result. We do not provide any usage kind as that should have been
// already set correctly while computing the cache entry.
inspect
.goal_evaluation_kind(inspect::WipCanonicalGoalEvaluationKind::ProvisionalCacheHit);
Self::tag_cycle_participants(
&mut self.stack,
&mut self.cycle_participants,
HasBeenUsed::empty(),
entry.head,
);
return entry.result;
} else if let Some(stack_depth) = cache_entry.stack_depth {
debug!("encountered cycle with depth {stack_depth:?}");
// We have a nested goal which directly relies on a goal deeper in the stack.
//
// We start by tagging all cycle participants, as that's necessary for caching.
//
// Finally we can return either the provisional response or the initial response
// in case we're in the first fixpoint iteration for this goal.
inspect.goal_evaluation_kind(inspect::WipCanonicalGoalEvaluationKind::CycleInStack);
let is_coinductive_cycle = Self::stack_coinductive_from(tcx, &self.stack, stack_depth);
let usage_kind = if is_coinductive_cycle {
HasBeenUsed::COINDUCTIVE_CYCLE
} else {
HasBeenUsed::INDUCTIVE_CYCLE
};
Self::tag_cycle_participants(
&mut self.stack,
&mut self.cycle_participants,
usage_kind,
stack_depth,
);
// Return the provisional result or, if we're in the first iteration,
// start with no constraints.
return if let Some(result) = self.stack[stack_depth].provisional_result {
result
} else if is_coinductive_cycle {
Self::response_no_constraints(tcx, input, Certainty::Yes)
} else {
Self::response_no_constraints(tcx, input, Certainty::OVERFLOW)
};
} else {
// No entry, we push this goal on the stack and try to prove it.
Entry::Vacant(v) => {
let depth = self.stack.next_index();
let entry = StackEntry {
input,
available_depth,
reached_depth: depth,
cycle_root_depth: depth,
encountered_overflow: false,
has_been_used: false,
provisional_result: None,
cycle_participants: Default::default(),
};
assert_eq!(self.stack.push(entry), depth);
v.insert(depth);
}
// We have a nested goal which relies on a goal `root` deeper in the stack.
//
// We first store that we may have to reprove `root` in case the provisional
// response is not equal to the final response. We also update the depth of all
// goals which recursively depend on our current goal to depend on `root`
// instead.
//
// Finally we can return either the provisional response for that goal if we have a
// coinductive cycle or an ambiguous result if the cycle is inductive.
Entry::Occupied(entry) => {
inspect.goal_evaluation_kind(inspect::WipCanonicalGoalEvaluationKind::CycleInStack);
let stack_depth = *entry.get();
debug!("encountered cycle with depth {stack_depth:?}");
// We start by updating the root depth of all cycle participants, and
// add all cycle participants to the root.
let root_depth = self.stack[stack_depth].cycle_root_depth;
let (prev, participants) = self.stack.raw.split_at_mut(stack_depth.as_usize() + 1);
let root = &mut prev[root_depth.as_usize()];
for entry in participants {
debug_assert!(entry.cycle_root_depth >= root_depth);
entry.cycle_root_depth = root_depth;
root.cycle_participants.insert(entry.input);
// FIXME(@lcnr): I believe that this line is needed as we could
// otherwise access a cache entry for the root of a cycle while
// computing the result for a cycle participant. This can result
// in unstable results due to incompleteness.
//
// However, a test for this would be an even more complex version of
// tests/ui/traits/next-solver/coinduction/incompleteness-unstable-result.rs.
// I did not bother to write such a test and we have no regression test
// for this. It would be good to have such a test :)
#[allow(rustc::potential_query_instability)]
root.cycle_participants.extend(entry.cycle_participants.drain());
}
// If we're in a cycle, we have to retry proving the cycle head
// until we reach a fixpoint. It is not enough to simply retry the
// `root` goal of this cycle.
//
// See tests/ui/traits/next-solver/cycles/fixpoint-rerun-all-cycle-heads.rs
// for an example.
self.stack[stack_depth].has_been_used = true;
return if let Some(result) = self.stack[stack_depth].provisional_result {
result
} else {
// If we don't have a provisional result yet we're in the first iteration,
// so we start with no constraints.
let is_coinductive = self.stack.raw[stack_depth.index()..]
.iter()
.all(|entry| entry.input.value.goal.predicate.is_coinductive(tcx));
if is_coinductive {
Self::response_no_constraints(tcx, input, Certainty::Yes)
} else {
Self::response_no_constraints(tcx, input, Certainty::OVERFLOW)
}
};
}
let depth = self.stack.next_index();
let entry = StackEntry {
input,
available_depth,
reached_depth: depth,
non_root_cycle_participant: None,
encountered_overflow: false,
has_been_used: HasBeenUsed::empty(),
provisional_result: None,
};
assert_eq!(self.stack.push(entry), depth);
cache_entry.stack_depth = Some(depth);
}
// This is for global caching, so we properly track query dependencies.
@ -290,29 +400,58 @@ pub(super) fn with_new_goal(
// point we are done.
for _ in 0..self.local_overflow_limit() {
let result = prove_goal(self, inspect);
// Check whether the current goal is the root of a cycle and whether
// we have to rerun because its provisional result differed from the
// final result.
let stack_entry = self.pop_stack();
debug_assert_eq!(stack_entry.input, input);
if stack_entry.has_been_used
&& stack_entry.provisional_result.map_or(true, |r| r != result)
{
// If so, update its provisional result and reevaluate it.
// If the current goal is not the root of a cycle, we are done.
if stack_entry.has_been_used.is_empty() {
return (stack_entry, result);
}
// If it is a cycle head, we have to keep trying to prove it until
// we reach a fixpoint. We need to do so for all cycle heads,
// not only for the root.
//
// See tests/ui/traits/next-solver/cycles/fixpoint-rerun-all-cycle-heads.rs
// for an example.
// Start by clearing all provisional cache entries which depend on this
// the current goal.
Self::clear_dependent_provisional_results(
&mut self.provisional_cache,
self.stack.next_index(),
);
// Check whether we reached a fixpoint, either because the final result
// is equal to the provisional result of the previous iteration, or because
// this was only the root of either coinductive or inductive cycles, and the
// final result is equal to the initial response for that case.
let reached_fixpoint = if let Some(r) = stack_entry.provisional_result {
r == result
} else if stack_entry.has_been_used == HasBeenUsed::COINDUCTIVE_CYCLE {
Self::response_no_constraints(tcx, input, Certainty::Yes) == result
} else if stack_entry.has_been_used == HasBeenUsed::INDUCTIVE_CYCLE {
Self::response_no_constraints(tcx, input, Certainty::OVERFLOW) == result
} else {
false
};
// If we did not reach a fixpoint, update the provisional result and reevaluate.
if reached_fixpoint {
return (stack_entry, result);
} else {
let depth = self.stack.push(StackEntry {
has_been_used: false,
has_been_used: HasBeenUsed::empty(),
provisional_result: Some(result),
..stack_entry
});
assert_eq!(self.stack_entries.insert(input, depth), None);
} else {
return (stack_entry, result);
debug_assert_eq!(self.provisional_cache[&input].stack_depth, Some(depth));
}
}
debug!("canonical cycle overflow");
let current_entry = self.pop_stack();
debug_assert!(current_entry.has_been_used.is_empty());
let result = Self::response_no_constraints(tcx, input, Certainty::OVERFLOW);
(current_entry, result)
});
@ -322,26 +461,35 @@ pub(super) fn with_new_goal(
// We're now done with this goal. In case this goal is involved in a larger cycle
// do not remove it from the provisional cache and update its provisional result.
// We only add the root of cycles to the global cache.
//
// It is not possible for any nested goal to depend on something deeper on the
// stack, as this would have also updated the depth of the current goal.
if final_entry.cycle_root_depth == self.stack.next_index() {
if let Some(head) = final_entry.non_root_cycle_participant {
let coinductive_stack = Self::stack_coinductive_from(tcx, &self.stack, head);
let entry = self.provisional_cache.get_mut(&input).unwrap();
entry.stack_depth = None;
if coinductive_stack {
entry.with_coinductive_stack = Some(DetachedEntry { head, result });
} else {
entry.with_inductive_stack = Some(DetachedEntry { head, result });
}
} else {
self.provisional_cache.remove(&input);
let reached_depth = final_entry.reached_depth.as_usize() - self.stack.len();
let cycle_participants = mem::take(&mut self.cycle_participants);
// When encountering a cycle, both inductive and coinductive, we only
// move the root into the global cache. We also store all other cycle
// participants involved.
//
// We disable the global cache entry of the root goal if a cycle
// We must not use the global cache entry of a root goal if a cycle
// participant is on the stack. This is necessary to prevent unstable
// results. See the comment of `StackEntry::cycle_participants` for
// results. See the comment of `SearchGraph::cycle_participants` for
// more details.
let reached_depth = final_entry.reached_depth.as_usize() - self.stack.len();
self.global_cache(tcx).insert(
tcx,
input,
proof_tree,
reached_depth,
final_entry.encountered_overflow,
final_entry.cycle_participants,
cycle_participants,
dep_node,
result,
)

View File

@ -0,0 +1,39 @@
// compile-flags: -Znext-solver
#![feature(rustc_attrs)]
// A test intended to check how we handle provisional results
// for a goal computed with an inductive and a coinductive stack.
//
// Unfortunately this doesn't really detect whether we've done
// something wrong but instead only showcases that we thought of
// this.
//
// FIXME(-Znext-solver=coinductive): With the new coinduction approach
// the same goal stack can be both inductive and coinductive, depending
// on why we're proving a specific nested goal. Rewrite this test
// at that point instead of relying on `BInd`.
#[rustc_coinductive]
trait A {}
#[rustc_coinductive]
trait B {}
trait BInd {}
impl<T: ?Sized + B> BInd for T {}
#[rustc_coinductive]
trait C {}
trait CInd {}
impl<T: ?Sized + C> CInd for T {}
impl<T: ?Sized + BInd + C> A for T {}
impl<T: ?Sized + CInd + C> B for T {}
impl<T: ?Sized + B + A> C for T {}
fn impls_a<T: A>() {}
fn main() {
impls_a::<()>();
//~^ ERROR overflow evaluating the requirement `(): A`
}

View File

@ -0,0 +1,16 @@
error[E0275]: overflow evaluating the requirement `(): A`
--> $DIR/mixed-cycles-1.rs:37:15
|
LL | impls_a::<()>();
| ^^
|
= help: consider increasing the recursion limit by adding a `#![recursion_limit = "256"]` attribute to your crate (`mixed_cycles_1`)
note: required by a bound in `impls_a`
--> $DIR/mixed-cycles-1.rs:34:15
|
LL | fn impls_a<T: A>() {}
| ^ required by this bound in `impls_a`
error: aborting due to 1 previous error
For more information about this error, try `rustc --explain E0275`.

View File

@ -0,0 +1,32 @@
// compile-flags: -Znext-solver
#![feature(rustc_attrs)]
// A test showcasing that the solver may need to
// compute a goal which is already in the provisional
// cache.
//
// However, given that `(): BInd` and `(): B` are currently distinct
// goals, this is actually not possible right now.
//
// FIXME(-Znext-solver=coinductive): With the new coinduction approach
// the same goal stack can be both inductive and coinductive, depending
// on why we're proving a specific nested goal. Rewrite this test
// at that point.
#[rustc_coinductive]
trait A {}
#[rustc_coinductive]
trait B {}
trait BInd {}
impl<T: ?Sized + B> BInd for T {}
impl<T: ?Sized + BInd + B> A for T {}
impl<T: ?Sized + BInd> B for T {}
fn impls_a<T: A>() {}
fn main() {
impls_a::<()>();
//~^ ERROR overflow evaluating the requirement `(): A`
}

View File

@ -0,0 +1,16 @@
error[E0275]: overflow evaluating the requirement `(): A`
--> $DIR/mixed-cycles-2.rs:30:15
|
LL | impls_a::<()>();
| ^^
|
= help: consider increasing the recursion limit by adding a `#![recursion_limit = "256"]` attribute to your crate (`mixed_cycles_2`)
note: required by a bound in `impls_a`
--> $DIR/mixed-cycles-2.rs:27:15
|
LL | fn impls_a<T: A>() {}
| ^ required by this bound in `impls_a`
error: aborting due to 1 previous error
For more information about this error, try `rustc --explain E0275`.

View File

@ -0,0 +1,70 @@
// compile-flags: -Znext-solver
// check-pass
#![feature(rustc_attrs)]
// A test showcasing that using a provisional cache can differ
// from only tracking stack entries.
//
// Without a provisional cache, we have the following proof tree:
//
// - (): A
// - (): B
// - (): A (coinductive cycle)
// - (): C
// - (): B (coinductive cycle)
// - (): C
// - (): B
// - (): A (coinductive cycle)
// - (): C (coinductive cycle)
//
// While with the current provisional cache implementation we get:
//
// - (): A
// - (): B
// - (): A (coinductive cycle)
// - (): C
// - (): B (coinductive cycle)
// - (): C
// - (): B (provisional cache hit)
//
// Note that if even if we were to expand the provisional cache hit,
// the proof tree would still be different:
//
// - (): A
// - (): B
// - (): A (coinductive cycle)
// - (): C
// - (): B (coinductive cycle)
// - (): C
// - (): B (provisional cache hit, expanded)
// - (): A (coinductive cycle)
// - (): C
// - (): B (coinductive cycle)
//
// Theoretically, this can result in observable behavior differences
// due to incompleteness. However, this would require a very convoluted
// example and would still be sound. The difference is determinstic
// and can not be observed outside of the cycle itself as we don't move
// non-root cycle participants into the global cache.
//
// For an example of how incompleteness could impact the observable behavior here, see
//
// tests/ui/traits/next-solver/cycles/coinduction/incompleteness-unstable-result.rs
#[rustc_coinductive]
trait A {}
#[rustc_coinductive]
trait B {}
#[rustc_coinductive]
trait C {}
impl<T: ?Sized + B + C> A for T {}
impl<T: ?Sized + A + C> B for T {}
impl<T: ?Sized + B> C for T {}
fn impls_a<T: A>() {}
fn main() {
impls_a::<()>();
}