Extract exhaustiveness into its own crate
This commit is contained in:
parent
61afc9c928
commit
281002d42c
22
Cargo.lock
22
Cargo.lock
@ -3756,6 +3756,7 @@ dependencies = [
|
||||
"rustc_monomorphize",
|
||||
"rustc_parse",
|
||||
"rustc_passes",
|
||||
"rustc_pattern_analysis",
|
||||
"rustc_privacy",
|
||||
"rustc_query_system",
|
||||
"rustc_resolve",
|
||||
@ -4229,6 +4230,7 @@ dependencies = [
|
||||
"rustc_infer",
|
||||
"rustc_macros",
|
||||
"rustc_middle",
|
||||
"rustc_pattern_analysis",
|
||||
"rustc_session",
|
||||
"rustc_span",
|
||||
"rustc_target",
|
||||
@ -4364,6 +4366,26 @@ dependencies = [
|
||||
"tracing",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "rustc_pattern_analysis"
|
||||
version = "0.0.0"
|
||||
dependencies = [
|
||||
"rustc_apfloat",
|
||||
"rustc_arena",
|
||||
"rustc_data_structures",
|
||||
"rustc_errors",
|
||||
"rustc_fluent_macro",
|
||||
"rustc_hir",
|
||||
"rustc_index",
|
||||
"rustc_macros",
|
||||
"rustc_middle",
|
||||
"rustc_session",
|
||||
"rustc_span",
|
||||
"rustc_target",
|
||||
"smallvec",
|
||||
"tracing",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "rustc_privacy"
|
||||
version = "0.0.0"
|
||||
|
@ -38,6 +38,7 @@ rustc_mir_transform = { path = "../rustc_mir_transform" }
|
||||
rustc_monomorphize = { path = "../rustc_monomorphize" }
|
||||
rustc_parse = { path = "../rustc_parse" }
|
||||
rustc_passes = { path = "../rustc_passes" }
|
||||
rustc_pattern_analysis = { path = "../rustc_pattern_analysis" }
|
||||
rustc_privacy = { path = "../rustc_privacy" }
|
||||
rustc_query_system = { path = "../rustc_query_system" }
|
||||
rustc_resolve = { path = "../rustc_resolve" }
|
||||
|
@ -128,6 +128,7 @@ pub static DEFAULT_LOCALE_RESOURCES: &[&str] = &[
|
||||
rustc_monomorphize::DEFAULT_LOCALE_RESOURCE,
|
||||
rustc_parse::DEFAULT_LOCALE_RESOURCE,
|
||||
rustc_passes::DEFAULT_LOCALE_RESOURCE,
|
||||
rustc_pattern_analysis::DEFAULT_LOCALE_RESOURCE,
|
||||
rustc_privacy::DEFAULT_LOCALE_RESOURCE,
|
||||
rustc_query_system::DEFAULT_LOCALE_RESOURCE,
|
||||
rustc_resolve::DEFAULT_LOCALE_RESOURCE,
|
||||
|
@ -17,6 +17,7 @@ rustc_index = { path = "../rustc_index" }
|
||||
rustc_infer = { path = "../rustc_infer" }
|
||||
rustc_macros = { path = "../rustc_macros" }
|
||||
rustc_middle = { path = "../rustc_middle" }
|
||||
rustc_pattern_analysis = { path = "../rustc_pattern_analysis" }
|
||||
rustc_session = { path = "../rustc_session" }
|
||||
rustc_span = { path = "../rustc_span" }
|
||||
rustc_target = { path = "../rustc_target" }
|
||||
|
@ -237,15 +237,6 @@ mir_build_non_const_path = runtime values cannot be referenced in patterns
|
||||
mir_build_non_exhaustive_match_all_arms_guarded =
|
||||
match arms with guards don't count towards exhaustivity
|
||||
|
||||
mir_build_non_exhaustive_omitted_pattern = some variants are not matched explicitly
|
||||
.help = ensure that all variants are matched explicitly by adding the suggested match arms
|
||||
.note = the matched value is of type `{$scrut_ty}` and the `non_exhaustive_omitted_patterns` attribute was found
|
||||
|
||||
mir_build_non_exhaustive_omitted_pattern_lint_on_arm = the lint level must be set on the whole match
|
||||
.help = it no longer has any effect to set the lint level on an individual match arm
|
||||
.label = remove this attribute
|
||||
.suggestion = set the lint level on the whole match
|
||||
|
||||
mir_build_non_exhaustive_patterns_type_not_empty = non-exhaustive patterns: type `{$ty}` is non-empty
|
||||
.def_note = `{$peeled_ty}` defined here
|
||||
.type_note = the matched value is of type `{$ty}`
|
||||
@ -260,10 +251,6 @@ mir_build_non_partial_eq_match =
|
||||
mir_build_nontrivial_structural_match =
|
||||
to use a constant of type `{$non_sm_ty}` in a pattern, the constant's initializer must be trivial or `{$non_sm_ty}` must be annotated with `#[derive(PartialEq, Eq)]`
|
||||
|
||||
mir_build_overlapping_range_endpoints = multiple patterns overlap on their endpoints
|
||||
.range = ... with this range
|
||||
.note = you likely meant to write mutually exclusive ranges
|
||||
|
||||
mir_build_pattern_not_covered = refutable pattern in {$origin}
|
||||
.pattern_ty = the matched value is of type `{$pattern_ty}`
|
||||
|
||||
@ -317,13 +304,6 @@ mir_build_unconditional_recursion = function cannot return without recursing
|
||||
|
||||
mir_build_unconditional_recursion_call_site_label = recursive call site
|
||||
|
||||
mir_build_uncovered = {$count ->
|
||||
[1] pattern `{$witness_1}`
|
||||
[2] patterns `{$witness_1}` and `{$witness_2}`
|
||||
[3] patterns `{$witness_1}`, `{$witness_2}` and `{$witness_3}`
|
||||
*[other] patterns `{$witness_1}`, `{$witness_2}`, `{$witness_3}` and {$remainder} more
|
||||
} not covered
|
||||
|
||||
mir_build_union_field_requires_unsafe =
|
||||
access to union field is unsafe and requires unsafe block
|
||||
.note = the field may not be properly initialized: using uninitialized data will cause undefined behavior
|
||||
|
@ -1,15 +1,12 @@
|
||||
use crate::{
|
||||
fluent_generated as fluent,
|
||||
thir::pattern::{deconstruct_pat::WitnessPat, MatchCheckCtxt},
|
||||
};
|
||||
use crate::fluent_generated as fluent;
|
||||
use rustc_errors::DiagnosticArgValue;
|
||||
use rustc_errors::{
|
||||
error_code, AddToDiagnostic, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
|
||||
Handler, IntoDiagnostic, MultiSpan, SubdiagnosticMessage,
|
||||
};
|
||||
use rustc_macros::{Diagnostic, LintDiagnostic, Subdiagnostic};
|
||||
use rustc_middle::thir::Pat;
|
||||
use rustc_middle::ty::{self, Ty};
|
||||
use rustc_pattern_analysis::{errors::Uncovered, usefulness::MatchCheckCtxt};
|
||||
use rustc_span::symbol::Symbol;
|
||||
use rustc_span::Span;
|
||||
|
||||
@ -812,94 +809,6 @@ pub struct NonPartialEqMatch<'tcx> {
|
||||
pub non_peq_ty: Ty<'tcx>,
|
||||
}
|
||||
|
||||
#[derive(LintDiagnostic)]
|
||||
#[diag(mir_build_overlapping_range_endpoints)]
|
||||
#[note]
|
||||
pub struct OverlappingRangeEndpoints<'tcx> {
|
||||
#[label(mir_build_range)]
|
||||
pub range: Span,
|
||||
#[subdiagnostic]
|
||||
pub overlap: Vec<Overlap<'tcx>>,
|
||||
}
|
||||
|
||||
pub struct Overlap<'tcx> {
|
||||
pub span: Span,
|
||||
pub range: Pat<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> AddToDiagnostic for Overlap<'tcx> {
|
||||
fn add_to_diagnostic_with<F>(self, diag: &mut Diagnostic, _: F)
|
||||
where
|
||||
F: Fn(&mut Diagnostic, SubdiagnosticMessage) -> SubdiagnosticMessage,
|
||||
{
|
||||
let Overlap { span, range } = self;
|
||||
|
||||
// FIXME(mejrs) unfortunately `#[derive(LintDiagnostic)]`
|
||||
// does not support `#[subdiagnostic(eager)]`...
|
||||
let message = format!("this range overlaps on `{range}`...");
|
||||
diag.span_label(span, message);
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(LintDiagnostic)]
|
||||
#[diag(mir_build_non_exhaustive_omitted_pattern)]
|
||||
#[help]
|
||||
#[note]
|
||||
pub(crate) struct NonExhaustiveOmittedPattern<'tcx> {
|
||||
pub scrut_ty: Ty<'tcx>,
|
||||
#[subdiagnostic]
|
||||
pub uncovered: Uncovered<'tcx>,
|
||||
}
|
||||
|
||||
#[derive(LintDiagnostic)]
|
||||
#[diag(mir_build_non_exhaustive_omitted_pattern_lint_on_arm)]
|
||||
#[help]
|
||||
pub(crate) struct NonExhaustiveOmittedPatternLintOnArm {
|
||||
#[label]
|
||||
pub lint_span: Span,
|
||||
#[suggestion(code = "#[{lint_level}({lint_name})]\n", applicability = "maybe-incorrect")]
|
||||
pub suggest_lint_on_match: Option<Span>,
|
||||
pub lint_level: &'static str,
|
||||
pub lint_name: &'static str,
|
||||
}
|
||||
|
||||
#[derive(Subdiagnostic)]
|
||||
#[label(mir_build_uncovered)]
|
||||
pub(crate) struct Uncovered<'tcx> {
|
||||
#[primary_span]
|
||||
span: Span,
|
||||
count: usize,
|
||||
witness_1: Pat<'tcx>,
|
||||
witness_2: Pat<'tcx>,
|
||||
witness_3: Pat<'tcx>,
|
||||
remainder: usize,
|
||||
}
|
||||
|
||||
impl<'tcx> Uncovered<'tcx> {
|
||||
pub fn new<'p>(
|
||||
span: Span,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
witnesses: Vec<WitnessPat<'tcx>>,
|
||||
) -> Self {
|
||||
let witness_1 = witnesses.get(0).unwrap().to_diagnostic_pat(cx);
|
||||
Self {
|
||||
span,
|
||||
count: witnesses.len(),
|
||||
// Substitute dummy values if witnesses is smaller than 3. These will never be read.
|
||||
witness_2: witnesses
|
||||
.get(1)
|
||||
.map(|w| w.to_diagnostic_pat(cx))
|
||||
.unwrap_or_else(|| witness_1.clone()),
|
||||
witness_3: witnesses
|
||||
.get(2)
|
||||
.map(|w| w.to_diagnostic_pat(cx))
|
||||
.unwrap_or_else(|| witness_1.clone()),
|
||||
witness_1,
|
||||
remainder: witnesses.len().saturating_sub(3),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Diagnostic)]
|
||||
#[diag(mir_build_pattern_not_covered, code = "E0005")]
|
||||
pub(crate) struct PatternNotCovered<'s, 'tcx> {
|
||||
|
@ -1,5 +1,7 @@
|
||||
use super::deconstruct_pat::{Constructor, DeconstructedPat, WitnessPat};
|
||||
use super::usefulness::{
|
||||
use rustc_pattern_analysis::constructor::Constructor;
|
||||
use rustc_pattern_analysis::errors::Uncovered;
|
||||
use rustc_pattern_analysis::pat::{DeconstructedPat, WitnessPat};
|
||||
use rustc_pattern_analysis::usefulness::{
|
||||
compute_match_usefulness, MatchArm, MatchCheckCtxt, Usefulness, UsefulnessReport,
|
||||
};
|
||||
|
||||
|
@ -2,11 +2,8 @@
|
||||
|
||||
mod check_match;
|
||||
mod const_to_pat;
|
||||
pub(crate) mod deconstruct_pat;
|
||||
mod usefulness;
|
||||
|
||||
pub(crate) use self::check_match::check_match;
|
||||
pub(crate) use self::usefulness::MatchCheckCtxt;
|
||||
|
||||
use crate::errors::*;
|
||||
use crate::thir::util::UserAnnotatedTyHelpers;
|
||||
|
22
compiler/rustc_pattern_analysis/Cargo.toml
Normal file
22
compiler/rustc_pattern_analysis/Cargo.toml
Normal file
@ -0,0 +1,22 @@
|
||||
[package]
|
||||
name = "rustc_pattern_analysis"
|
||||
version = "0.0.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
# tidy-alphabetical-start
|
||||
rustc_apfloat = "0.2.0"
|
||||
rustc_arena = { path = "../rustc_arena" }
|
||||
rustc_data_structures = { path = "../rustc_data_structures" }
|
||||
rustc_errors = { path = "../rustc_errors" }
|
||||
rustc_fluent_macro = { path = "../rustc_fluent_macro" }
|
||||
rustc_hir = { path = "../rustc_hir" }
|
||||
rustc_index = { path = "../rustc_index" }
|
||||
rustc_macros = { path = "../rustc_macros" }
|
||||
rustc_middle = { path = "../rustc_middle" }
|
||||
rustc_session = { path = "../rustc_session" }
|
||||
rustc_span = { path = "../rustc_span" }
|
||||
rustc_target = { path = "../rustc_target" }
|
||||
smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }
|
||||
tracing = "0.1"
|
||||
# tidy-alphabetical-end
|
19
compiler/rustc_pattern_analysis/messages.ftl
Normal file
19
compiler/rustc_pattern_analysis/messages.ftl
Normal file
@ -0,0 +1,19 @@
|
||||
pattern_analysis_non_exhaustive_omitted_pattern = some variants are not matched explicitly
|
||||
.help = ensure that all variants are matched explicitly by adding the suggested match arms
|
||||
.note = the matched value is of type `{$scrut_ty}` and the `non_exhaustive_omitted_patterns` attribute was found
|
||||
|
||||
pattern_analysis_non_exhaustive_omitted_pattern_lint_on_arm = the lint level must be set on the whole match
|
||||
.help = it no longer has any effect to set the lint level on an individual match arm
|
||||
.label = remove this attribute
|
||||
.suggestion = set the lint level on the whole match
|
||||
|
||||
pattern_analysis_overlapping_range_endpoints = multiple patterns overlap on their endpoints
|
||||
.label = ... with this range
|
||||
.note = you likely meant to write mutually exclusive ranges
|
||||
|
||||
pattern_analysis_uncovered = {$count ->
|
||||
[1] pattern `{$witness_1}`
|
||||
[2] patterns `{$witness_1}` and `{$witness_2}`
|
||||
[3] patterns `{$witness_1}`, `{$witness_2}` and `{$witness_3}`
|
||||
*[other] patterns `{$witness_1}`, `{$witness_2}`, `{$witness_3}` and {$remainder} more
|
||||
} not covered
|
@ -1,6 +1,5 @@
|
||||
//! As explained in [`super::usefulness`], values and patterns are made from constructors applied to
|
||||
//! fields. This file defines a `Constructor` enum, a `Fields` struct, and various operations to
|
||||
//! manipulate them and convert them from/to patterns.
|
||||
//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
|
||||
//!
|
||||
//! There are two important bits of core logic in this file: constructor inclusion and constructor
|
||||
//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
|
||||
@ -149,49 +148,31 @@
|
||||
//! we assume they never cover each other. In order to respect the invariants of
|
||||
//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
|
||||
|
||||
use std::cell::Cell;
|
||||
use std::cmp::{self, max, min, Ordering};
|
||||
use std::fmt;
|
||||
use std::iter::once;
|
||||
|
||||
use smallvec::{smallvec, SmallVec};
|
||||
use smallvec::SmallVec;
|
||||
|
||||
use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
|
||||
use rustc_data_structures::captures::Captures;
|
||||
use rustc_data_structures::fx::FxHashSet;
|
||||
use rustc_hir::RangeEnd;
|
||||
use rustc_index::{Idx, IndexVec};
|
||||
use rustc_index::IndexVec;
|
||||
use rustc_middle::middle::stability::EvalResult;
|
||||
use rustc_middle::mir;
|
||||
use rustc_middle::mir::interpret::Scalar;
|
||||
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange, PatRangeBoundary};
|
||||
use rustc_middle::thir::{Pat, PatKind, PatRange, PatRangeBoundary};
|
||||
use rustc_middle::ty::layout::IntegerExt;
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
|
||||
use rustc_span::{Span, DUMMY_SP};
|
||||
use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||||
use rustc_span::DUMMY_SP;
|
||||
use rustc_target::abi::{Integer, VariantIdx, FIRST_VARIANT};
|
||||
|
||||
use self::Constructor::*;
|
||||
use self::MaybeInfiniteInt::*;
|
||||
use self::SliceKind::*;
|
||||
|
||||
use super::usefulness::{MatchCheckCtxt, PatCtxt};
|
||||
|
||||
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
|
||||
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
|
||||
fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
|
||||
if let PatKind::Or { pats } = &pat.kind {
|
||||
for pat in pats.iter() {
|
||||
expand(pat, vec);
|
||||
}
|
||||
} else {
|
||||
vec.push(pat)
|
||||
}
|
||||
}
|
||||
|
||||
let mut pats = Vec::new();
|
||||
expand(pat, &mut pats);
|
||||
pats
|
||||
}
|
||||
use crate::pat::Fields;
|
||||
use crate::usefulness::{MatchCheckCtxt, PatCtxt};
|
||||
|
||||
/// Whether we have seen a constructor in the column or not.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
|
||||
@ -204,7 +185,7 @@ enum Presence {
|
||||
/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
|
||||
/// `255`. See `signed_bias` for details.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
|
||||
pub(crate) enum MaybeInfiniteInt {
|
||||
pub enum MaybeInfiniteInt {
|
||||
NegInfinity,
|
||||
/// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`.
|
||||
Finite(u128),
|
||||
@ -232,7 +213,7 @@ impl MaybeInfiniteInt {
|
||||
let x = bits ^ bias;
|
||||
Finite(x)
|
||||
}
|
||||
fn from_pat_range_bdy<'tcx>(
|
||||
pub(crate) fn from_pat_range_bdy<'tcx>(
|
||||
bdy: PatRangeBoundary<'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
tcx: TyCtxt<'tcx>,
|
||||
@ -279,7 +260,7 @@ impl MaybeInfiniteInt {
|
||||
}
|
||||
|
||||
/// Note: this will not turn a finite value into an infinite one or vice-versa.
|
||||
pub(crate) fn minus_one(self) -> Self {
|
||||
pub fn minus_one(self) -> Self {
|
||||
match self {
|
||||
Finite(n) => match n.checked_sub(1) {
|
||||
Some(m) => Finite(m),
|
||||
@ -290,7 +271,7 @@ impl MaybeInfiniteInt {
|
||||
}
|
||||
}
|
||||
/// Note: this will not turn a finite value into an infinite one or vice-versa.
|
||||
pub(crate) fn plus_one(self) -> Self {
|
||||
pub fn plus_one(self) -> Self {
|
||||
match self {
|
||||
Finite(n) => match n.checked_add(1) {
|
||||
Some(m) => Finite(m),
|
||||
@ -308,7 +289,7 @@ impl MaybeInfiniteInt {
|
||||
/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
|
||||
/// space: i.e., `range.lo < range.hi`.
|
||||
#[derive(Clone, Copy, PartialEq, Eq)]
|
||||
pub(crate) struct IntRange {
|
||||
pub struct IntRange {
|
||||
pub(crate) lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
|
||||
pub(crate) hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
|
||||
}
|
||||
@ -320,20 +301,20 @@ impl IntRange {
|
||||
}
|
||||
|
||||
/// Best effort; will not know that e.g. `255u8..` is a singleton.
|
||||
pub(super) fn is_singleton(&self) -> bool {
|
||||
pub fn is_singleton(&self) -> bool {
|
||||
// Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
|
||||
// to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
|
||||
self.lo.plus_one() == self.hi
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange {
|
||||
pub fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange {
|
||||
let x = MaybeInfiniteInt::new_finite(tcx, ty, bits);
|
||||
IntRange { lo: x, hi: x.plus_one() }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
|
||||
pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
|
||||
if end == RangeEnd::Included {
|
||||
hi = hi.plus_one();
|
||||
}
|
||||
@ -443,7 +424,7 @@ impl IntRange {
|
||||
|
||||
/// Whether the range denotes the fictitious values before `isize::MIN` or after
|
||||
/// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
|
||||
pub(crate) fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool {
|
||||
pub fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool {
|
||||
ty.is_ptr_sized_integral() && {
|
||||
// The two invalid ranges are `NegInfinity..isize::MIN` (represented as
|
||||
// `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `to_diagnostic_pat_range_bdy`
|
||||
@ -507,7 +488,7 @@ impl fmt::Debug for IntRange {
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
enum SliceKind {
|
||||
pub enum SliceKind {
|
||||
/// Patterns of length `n` (`[x, y]`).
|
||||
FixedLen(usize),
|
||||
/// Patterns using the `..` notation (`[x, .., y]`).
|
||||
@ -537,15 +518,15 @@ impl SliceKind {
|
||||
|
||||
/// A constructor for array and slice patterns.
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
pub(super) struct Slice {
|
||||
pub struct Slice {
|
||||
/// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
|
||||
array_len: Option<usize>,
|
||||
pub(crate) array_len: Option<usize>,
|
||||
/// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
|
||||
kind: SliceKind,
|
||||
pub(crate) kind: SliceKind,
|
||||
}
|
||||
|
||||
impl Slice {
|
||||
fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
|
||||
pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
|
||||
let kind = match (array_len, kind) {
|
||||
// If the middle `..` has length 0, we effectively have a fixed-length pattern.
|
||||
(Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
|
||||
@ -558,7 +539,7 @@ impl Slice {
|
||||
Slice { array_len, kind }
|
||||
}
|
||||
|
||||
fn arity(self) -> usize {
|
||||
pub(crate) fn arity(self) -> usize {
|
||||
self.kind.arity()
|
||||
}
|
||||
|
||||
@ -729,10 +710,10 @@ impl Slice {
|
||||
|
||||
/// A globally unique id to distinguish `Opaque` patterns.
|
||||
#[derive(Clone, Debug, PartialEq, Eq)]
|
||||
pub(super) struct OpaqueId(u32);
|
||||
pub struct OpaqueId(u32);
|
||||
|
||||
impl OpaqueId {
|
||||
fn new() -> Self {
|
||||
pub fn new() -> Self {
|
||||
use std::sync::atomic::{AtomicU32, Ordering};
|
||||
static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
|
||||
OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
|
||||
@ -747,7 +728,7 @@ impl OpaqueId {
|
||||
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
|
||||
/// `Fields`.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(super) enum Constructor<'tcx> {
|
||||
pub enum Constructor<'tcx> {
|
||||
/// The constructor for patterns that have a single constructor, like tuples, struct patterns,
|
||||
/// and references. Fixed-length arrays are treated separately with `Slice`.
|
||||
Single,
|
||||
@ -816,7 +797,7 @@ impl<'tcx> Constructor<'tcx> {
|
||||
}
|
||||
}
|
||||
|
||||
fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
|
||||
pub(crate) fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
|
||||
match *self {
|
||||
Variant(idx) => idx,
|
||||
Single => {
|
||||
@ -829,7 +810,7 @@ impl<'tcx> Constructor<'tcx> {
|
||||
|
||||
/// The number of fields for this constructor. This must be kept in sync with
|
||||
/// `Fields::wildcards`.
|
||||
pub(super) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
|
||||
pub(crate) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
|
||||
match self {
|
||||
Single | Variant(_) => match pcx.ty.kind() {
|
||||
ty::Tuple(fs) => fs.len(),
|
||||
@ -866,7 +847,7 @@ impl<'tcx> Constructor<'tcx> {
|
||||
/// this checks for inclusion.
|
||||
// We inline because this has a single call site in `Matrix::specialize_constructor`.
|
||||
#[inline]
|
||||
pub(super) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
|
||||
pub(crate) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
|
||||
match (self, other) {
|
||||
(Wildcard, _) => {
|
||||
span_bug!(
|
||||
@ -923,7 +904,7 @@ impl<'tcx> Constructor<'tcx> {
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub(super) enum VariantVisibility {
|
||||
pub enum VariantVisibility {
|
||||
/// Variant that doesn't fit the other cases, i.e. most variants.
|
||||
Visible,
|
||||
/// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
|
||||
@ -941,7 +922,7 @@ pub(super) enum VariantVisibility {
|
||||
/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
|
||||
/// `exhaustive_patterns` feature.
|
||||
#[derive(Debug)]
|
||||
pub(super) enum ConstructorSet {
|
||||
pub enum ConstructorSet {
|
||||
/// The type has a single constructor, e.g. `&T` or a struct. `empty` tracks whether the
|
||||
/// constructor is empty.
|
||||
Single { empty: bool },
|
||||
@ -997,7 +978,7 @@ impl ConstructorSet {
|
||||
///
|
||||
/// See at the top of the file for considerations of emptiness.
|
||||
#[instrument(level = "debug", skip(cx), ret)]
|
||||
pub(super) fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
|
||||
pub fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
|
||||
let make_range = |start, end| {
|
||||
IntRange::from_range(
|
||||
MaybeInfiniteInt::new_finite(cx.tcx, ty, start),
|
||||
@ -1258,707 +1239,3 @@ impl ConstructorSet {
|
||||
SplitConstructorSet { present, missing, missing_empty }
|
||||
}
|
||||
}
|
||||
|
||||
/// A value can be decomposed into a constructor applied to some fields. This struct represents
|
||||
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
|
||||
///
|
||||
/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
|
||||
/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
|
||||
/// given a pattern we fill some of the fields with its subpatterns.
|
||||
/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
|
||||
/// `extract_pattern_arguments` we fill some of the entries, and the result is
|
||||
/// `[Some(0), _, _, _]`.
|
||||
/// ```compile_fail,E0004
|
||||
/// # fn foo() -> [Option<u8>; 4] { [None; 4] }
|
||||
/// let x: [Option<u8>; 4] = foo();
|
||||
/// match x {
|
||||
/// [Some(0), ..] => {}
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// Note that the number of fields of a constructor may not match the fields declared in the
|
||||
/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
|
||||
/// because the code mustn't observe that it is uninhabited. In that case that field is not
|
||||
/// included in `fields`. For that reason, when you have a `FieldIdx` you must use
|
||||
/// `index_with_declared_idx`.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub(super) struct Fields<'p, 'tcx> {
|
||||
fields: &'p [DeconstructedPat<'p, 'tcx>],
|
||||
}
|
||||
|
||||
impl<'p, 'tcx> Fields<'p, 'tcx> {
|
||||
fn empty() -> Self {
|
||||
Fields { fields: &[] }
|
||||
}
|
||||
|
||||
fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
|
||||
let field: &_ = cx.pattern_arena.alloc(field);
|
||||
Fields { fields: std::slice::from_ref(field) }
|
||||
}
|
||||
|
||||
pub(super) fn from_iter(
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
|
||||
) -> Self {
|
||||
let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
|
||||
Fields { fields }
|
||||
}
|
||||
|
||||
fn wildcards_from_tys(
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
tys: impl IntoIterator<Item = Ty<'tcx>>,
|
||||
) -> Self {
|
||||
Fields::from_iter(cx, tys.into_iter().map(|ty| DeconstructedPat::wildcard(ty, DUMMY_SP)))
|
||||
}
|
||||
|
||||
// In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
|
||||
// uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
|
||||
// This lists the fields we keep along with their types.
|
||||
fn list_variant_nonhidden_fields<'a>(
|
||||
cx: &'a MatchCheckCtxt<'p, 'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
variant: &'a VariantDef,
|
||||
) -> impl Iterator<Item = (FieldIdx, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
|
||||
let ty::Adt(adt, args) = ty.kind() else { bug!() };
|
||||
// Whether we must not match the fields of this variant exhaustively.
|
||||
let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
|
||||
|
||||
variant.fields.iter().enumerate().filter_map(move |(i, field)| {
|
||||
let ty = field.ty(cx.tcx, args);
|
||||
// `field.ty()` doesn't normalize after substituting.
|
||||
let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
|
||||
let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
|
||||
let is_uninhabited = cx.tcx.features().exhaustive_patterns && cx.is_uninhabited(ty);
|
||||
|
||||
if is_uninhabited && (!is_visible || is_non_exhaustive) {
|
||||
None
|
||||
} else {
|
||||
Some((FieldIdx::new(i), ty))
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new list of wildcard fields for a given constructor. The result must have a
|
||||
/// length of `constructor.arity()`.
|
||||
#[instrument(level = "trace")]
|
||||
pub(super) fn wildcards(pcx: &PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
|
||||
let ret = match constructor {
|
||||
Single | Variant(_) => match pcx.ty.kind() {
|
||||
ty::Tuple(fs) => Fields::wildcards_from_tys(pcx.cx, fs.iter()),
|
||||
ty::Ref(_, rty, _) => Fields::wildcards_from_tys(pcx.cx, once(*rty)),
|
||||
ty::Adt(adt, args) => {
|
||||
if adt.is_box() {
|
||||
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
||||
// patterns. If we're here we can assume this is a box pattern.
|
||||
Fields::wildcards_from_tys(pcx.cx, once(args.type_at(0)))
|
||||
} else {
|
||||
let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
|
||||
let tys = Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
|
||||
.map(|(_, ty)| ty);
|
||||
Fields::wildcards_from_tys(pcx.cx, tys)
|
||||
}
|
||||
}
|
||||
_ => bug!("Unexpected type for `Single` constructor: {:?}", pcx),
|
||||
},
|
||||
Slice(slice) => match *pcx.ty.kind() {
|
||||
ty::Slice(ty) | ty::Array(ty, _) => {
|
||||
let arity = slice.arity();
|
||||
Fields::wildcards_from_tys(pcx.cx, (0..arity).map(|_| ty))
|
||||
}
|
||||
_ => bug!("bad slice pattern {:?} {:?}", constructor, pcx),
|
||||
},
|
||||
Bool(..)
|
||||
| IntRange(..)
|
||||
| F32Range(..)
|
||||
| F64Range(..)
|
||||
| Str(..)
|
||||
| Opaque(..)
|
||||
| NonExhaustive
|
||||
| Hidden
|
||||
| Missing { .. }
|
||||
| Wildcard => Fields::empty(),
|
||||
Or => {
|
||||
bug!("called `Fields::wildcards` on an `Or` ctor")
|
||||
}
|
||||
};
|
||||
debug!(?ret);
|
||||
ret
|
||||
}
|
||||
|
||||
/// Returns the list of patterns.
|
||||
pub(super) fn iter_patterns<'a>(
|
||||
&'a self,
|
||||
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
|
||||
self.fields.iter()
|
||||
}
|
||||
}
|
||||
|
||||
/// Values and patterns can be represented as a constructor applied to some fields. This represents
|
||||
/// a pattern in this form.
|
||||
/// This also uses interior mutability to keep track of whether the pattern has been found reachable
|
||||
/// during analysis. For this reason they cannot be cloned.
|
||||
/// A `DeconstructedPat` will almost always come from user input; the only exception are some
|
||||
/// `Wildcard`s introduced during specialization.
|
||||
pub(crate) struct DeconstructedPat<'p, 'tcx> {
|
||||
ctor: Constructor<'tcx>,
|
||||
fields: Fields<'p, 'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
span: Span,
|
||||
/// Whether removing this arm would change the behavior of the match expression.
|
||||
useful: Cell<bool>,
|
||||
}
|
||||
|
||||
impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
|
||||
pub(super) fn wildcard(ty: Ty<'tcx>, span: Span) -> Self {
|
||||
Self::new(Wildcard, Fields::empty(), ty, span)
|
||||
}
|
||||
|
||||
pub(super) fn new(
|
||||
ctor: Constructor<'tcx>,
|
||||
fields: Fields<'p, 'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
span: Span,
|
||||
) -> Self {
|
||||
DeconstructedPat { ctor, fields, ty, span, useful: Cell::new(false) }
|
||||
}
|
||||
|
||||
/// Note: the input patterns must have been lowered through
|
||||
/// `super::check_match::MatchVisitor::lower_pattern`.
|
||||
pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
|
||||
let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
|
||||
let ctor;
|
||||
let fields;
|
||||
match &pat.kind {
|
||||
PatKind::AscribeUserType { subpattern, .. }
|
||||
| PatKind::InlineConstant { subpattern, .. } => return mkpat(subpattern),
|
||||
PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
|
||||
PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
|
||||
ctor = Wildcard;
|
||||
fields = Fields::empty();
|
||||
}
|
||||
PatKind::Deref { subpattern } => {
|
||||
ctor = Single;
|
||||
fields = Fields::singleton(cx, mkpat(subpattern));
|
||||
}
|
||||
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
|
||||
match pat.ty.kind() {
|
||||
ty::Tuple(fs) => {
|
||||
ctor = Single;
|
||||
let mut wilds: SmallVec<[_; 2]> =
|
||||
fs.iter().map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
|
||||
for pat in subpatterns {
|
||||
wilds[pat.field.index()] = mkpat(&pat.pattern);
|
||||
}
|
||||
fields = Fields::from_iter(cx, wilds);
|
||||
}
|
||||
ty::Adt(adt, args) if adt.is_box() => {
|
||||
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
||||
// patterns. If we're here we can assume this is a box pattern.
|
||||
// FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
|
||||
// _)` or a box pattern. As a hack to avoid an ICE with the former, we
|
||||
// ignore other fields than the first one. This will trigger an error later
|
||||
// anyway.
|
||||
// See https://github.com/rust-lang/rust/issues/82772 ,
|
||||
// explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
|
||||
// The problem is that we can't know from the type whether we'll match
|
||||
// normally or through box-patterns. We'll have to figure out a proper
|
||||
// solution when we introduce generalized deref patterns. Also need to
|
||||
// prevent mixing of those two options.
|
||||
let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
|
||||
let pat = if let Some(pat) = pattern {
|
||||
mkpat(&pat.pattern)
|
||||
} else {
|
||||
DeconstructedPat::wildcard(args.type_at(0), pat.span)
|
||||
};
|
||||
ctor = Single;
|
||||
fields = Fields::singleton(cx, pat);
|
||||
}
|
||||
ty::Adt(adt, _) => {
|
||||
ctor = match pat.kind {
|
||||
PatKind::Leaf { .. } => Single,
|
||||
PatKind::Variant { variant_index, .. } => Variant(variant_index),
|
||||
_ => bug!(),
|
||||
};
|
||||
let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
|
||||
// For each field in the variant, we store the relevant index into `self.fields` if any.
|
||||
let mut field_id_to_id: Vec<Option<usize>> =
|
||||
(0..variant.fields.len()).map(|_| None).collect();
|
||||
let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
|
||||
.enumerate()
|
||||
.map(|(i, (field, ty))| {
|
||||
field_id_to_id[field.index()] = Some(i);
|
||||
ty
|
||||
});
|
||||
let mut wilds: SmallVec<[_; 2]> =
|
||||
tys.map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
|
||||
for pat in subpatterns {
|
||||
if let Some(i) = field_id_to_id[pat.field.index()] {
|
||||
wilds[i] = mkpat(&pat.pattern);
|
||||
}
|
||||
}
|
||||
fields = Fields::from_iter(cx, wilds);
|
||||
}
|
||||
_ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
|
||||
}
|
||||
}
|
||||
PatKind::Constant { value } => {
|
||||
match pat.ty.kind() {
|
||||
ty::Bool => {
|
||||
ctor = match value.try_eval_bool(cx.tcx, cx.param_env) {
|
||||
Some(b) => Bool(b),
|
||||
None => Opaque(OpaqueId::new()),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
ty::Char | ty::Int(_) | ty::Uint(_) => {
|
||||
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
||||
Some(bits) => IntRange(IntRange::from_bits(cx.tcx, pat.ty, bits)),
|
||||
None => Opaque(OpaqueId::new()),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
ty::Float(ty::FloatTy::F32) => {
|
||||
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
||||
Some(bits) => {
|
||||
use rustc_apfloat::Float;
|
||||
let value = rustc_apfloat::ieee::Single::from_bits(bits);
|
||||
F32Range(value, value, RangeEnd::Included)
|
||||
}
|
||||
None => Opaque(OpaqueId::new()),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
ty::Float(ty::FloatTy::F64) => {
|
||||
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
||||
Some(bits) => {
|
||||
use rustc_apfloat::Float;
|
||||
let value = rustc_apfloat::ieee::Double::from_bits(bits);
|
||||
F64Range(value, value, RangeEnd::Included)
|
||||
}
|
||||
None => Opaque(OpaqueId::new()),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
ty::Ref(_, t, _) if t.is_str() => {
|
||||
// We want a `&str` constant to behave like a `Deref` pattern, to be compatible
|
||||
// with other `Deref` patterns. This could have been done in `const_to_pat`,
|
||||
// but that causes issues with the rest of the matching code.
|
||||
// So here, the constructor for a `"foo"` pattern is `&` (represented by
|
||||
// `Single`), and has one field. That field has constructor `Str(value)` and no
|
||||
// fields.
|
||||
// Note: `t` is `str`, not `&str`.
|
||||
let subpattern =
|
||||
DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
|
||||
ctor = Single;
|
||||
fields = Fields::singleton(cx, subpattern)
|
||||
}
|
||||
// All constants that can be structurally matched have already been expanded
|
||||
// into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
|
||||
// opaque.
|
||||
_ => {
|
||||
ctor = Opaque(OpaqueId::new());
|
||||
fields = Fields::empty();
|
||||
}
|
||||
}
|
||||
}
|
||||
PatKind::Range(box PatRange { lo, hi, end, .. }) => {
|
||||
let ty = pat.ty;
|
||||
ctor = match ty.kind() {
|
||||
ty::Char | ty::Int(_) | ty::Uint(_) => {
|
||||
let lo =
|
||||
MaybeInfiniteInt::from_pat_range_bdy(*lo, ty, cx.tcx, cx.param_env);
|
||||
let hi =
|
||||
MaybeInfiniteInt::from_pat_range_bdy(*hi, ty, cx.tcx, cx.param_env);
|
||||
IntRange(IntRange::from_range(lo, hi, *end))
|
||||
}
|
||||
ty::Float(fty) => {
|
||||
use rustc_apfloat::Float;
|
||||
let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
|
||||
let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
|
||||
match fty {
|
||||
ty::FloatTy::F32 => {
|
||||
use rustc_apfloat::ieee::Single;
|
||||
let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
|
||||
let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
|
||||
F32Range(lo, hi, *end)
|
||||
}
|
||||
ty::FloatTy::F64 => {
|
||||
use rustc_apfloat::ieee::Double;
|
||||
let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
|
||||
let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
|
||||
F64Range(lo, hi, *end)
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => bug!("invalid type for range pattern: {}", ty),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
|
||||
let array_len = match pat.ty.kind() {
|
||||
ty::Array(_, length) => {
|
||||
Some(length.eval_target_usize(cx.tcx, cx.param_env) as usize)
|
||||
}
|
||||
ty::Slice(_) => None,
|
||||
_ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
|
||||
};
|
||||
let kind = if slice.is_some() {
|
||||
VarLen(prefix.len(), suffix.len())
|
||||
} else {
|
||||
FixedLen(prefix.len() + suffix.len())
|
||||
};
|
||||
ctor = Slice(Slice::new(array_len, kind));
|
||||
fields =
|
||||
Fields::from_iter(cx, prefix.iter().chain(suffix.iter()).map(|p| mkpat(&*p)));
|
||||
}
|
||||
PatKind::Or { .. } => {
|
||||
ctor = Or;
|
||||
let pats = expand_or_pat(pat);
|
||||
fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
|
||||
}
|
||||
PatKind::Never => {
|
||||
// FIXME(never_patterns): handle `!` in exhaustiveness. This is a sane default
|
||||
// in the meantime.
|
||||
ctor = Wildcard;
|
||||
fields = Fields::empty();
|
||||
}
|
||||
PatKind::Error(_) => {
|
||||
ctor = Opaque(OpaqueId::new());
|
||||
fields = Fields::empty();
|
||||
}
|
||||
}
|
||||
DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
|
||||
}
|
||||
|
||||
pub(super) fn is_or_pat(&self) -> bool {
|
||||
matches!(self.ctor, Or)
|
||||
}
|
||||
/// Expand this (possibly-nested) or-pattern into its alternatives.
|
||||
pub(super) fn flatten_or_pat(&'p self) -> SmallVec<[&'p Self; 1]> {
|
||||
if self.is_or_pat() {
|
||||
self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect()
|
||||
} else {
|
||||
smallvec![self]
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn ctor(&self) -> &Constructor<'tcx> {
|
||||
&self.ctor
|
||||
}
|
||||
pub(super) fn ty(&self) -> Ty<'tcx> {
|
||||
self.ty
|
||||
}
|
||||
pub(super) fn span(&self) -> Span {
|
||||
self.span
|
||||
}
|
||||
|
||||
pub(super) fn iter_fields<'a>(
|
||||
&'a self,
|
||||
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
|
||||
self.fields.iter_patterns()
|
||||
}
|
||||
|
||||
/// Specialize this pattern with a constructor.
|
||||
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
|
||||
pub(super) fn specialize<'a>(
|
||||
&'a self,
|
||||
pcx: &PatCtxt<'_, 'p, 'tcx>,
|
||||
other_ctor: &Constructor<'tcx>,
|
||||
) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
|
||||
match (&self.ctor, other_ctor) {
|
||||
(Wildcard, _) => {
|
||||
// We return a wildcard for each field of `other_ctor`.
|
||||
Fields::wildcards(pcx, other_ctor).iter_patterns().collect()
|
||||
}
|
||||
(Slice(self_slice), Slice(other_slice))
|
||||
if self_slice.arity() != other_slice.arity() =>
|
||||
{
|
||||
// The only tricky case: two slices of different arity. Since `self_slice` covers
|
||||
// `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
|
||||
// `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
|
||||
// arity. So we fill the middle part with enough wildcards to reach the length of
|
||||
// the new, larger slice.
|
||||
match self_slice.kind {
|
||||
FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
|
||||
VarLen(prefix, suffix) => {
|
||||
let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
|
||||
bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
|
||||
};
|
||||
let prefix = &self.fields.fields[..prefix];
|
||||
let suffix = &self.fields.fields[self_slice.arity() - suffix..];
|
||||
let wildcard: &_ = pcx
|
||||
.cx
|
||||
.pattern_arena
|
||||
.alloc(DeconstructedPat::wildcard(inner_ty, DUMMY_SP));
|
||||
let extra_wildcards = other_slice.arity() - self_slice.arity();
|
||||
let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
|
||||
prefix.iter().chain(extra_wildcards).chain(suffix).collect()
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => self.fields.iter_patterns().collect(),
|
||||
}
|
||||
}
|
||||
|
||||
/// We keep track for each pattern if it was ever useful during the analysis. This is used
|
||||
/// with `redundant_spans` to report redundant subpatterns arising from or patterns.
|
||||
pub(super) fn set_useful(&self) {
|
||||
self.useful.set(true)
|
||||
}
|
||||
pub(super) fn is_useful(&self) -> bool {
|
||||
if self.useful.get() {
|
||||
true
|
||||
} else if self.is_or_pat() && self.iter_fields().any(|f| f.is_useful()) {
|
||||
// We always expand or patterns in the matrix, so we will never see the actual
|
||||
// or-pattern (the one with constructor `Or`) in the column. As such, it will not be
|
||||
// marked as useful itself, only its children will. We recover this information here.
|
||||
self.set_useful();
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// Report the spans of subpatterns that were not useful, if any.
|
||||
pub(super) fn redundant_spans(&self) -> Vec<Span> {
|
||||
let mut spans = Vec::new();
|
||||
self.collect_redundant_spans(&mut spans);
|
||||
spans
|
||||
}
|
||||
fn collect_redundant_spans(&self, spans: &mut Vec<Span>) {
|
||||
// We don't look at subpatterns if we already reported the whole pattern as redundant.
|
||||
if !self.is_useful() {
|
||||
spans.push(self.span);
|
||||
} else {
|
||||
for p in self.iter_fields() {
|
||||
p.collect_redundant_spans(spans);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
|
||||
/// `Display` impl.
|
||||
impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
// Printing lists is a chore.
|
||||
let mut first = true;
|
||||
let mut start_or_continue = |s| {
|
||||
if first {
|
||||
first = false;
|
||||
""
|
||||
} else {
|
||||
s
|
||||
}
|
||||
};
|
||||
let mut start_or_comma = || start_or_continue(", ");
|
||||
|
||||
match &self.ctor {
|
||||
Single | Variant(_) => match self.ty.kind() {
|
||||
ty::Adt(def, _) if def.is_box() => {
|
||||
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
|
||||
// of `std`). So this branch is only reachable when the feature is enabled and
|
||||
// the pattern is a box pattern.
|
||||
let subpattern = self.iter_fields().next().unwrap();
|
||||
write!(f, "box {subpattern:?}")
|
||||
}
|
||||
ty::Adt(..) | ty::Tuple(..) => {
|
||||
let variant = match self.ty.kind() {
|
||||
ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
|
||||
ty::Tuple(_) => None,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
if let Some(variant) = variant {
|
||||
write!(f, "{}", variant.name)?;
|
||||
}
|
||||
|
||||
// Without `cx`, we can't know which field corresponds to which, so we can't
|
||||
// get the names of the fields. Instead we just display everything as a tuple
|
||||
// struct, which should be good enough.
|
||||
write!(f, "(")?;
|
||||
for p in self.iter_fields() {
|
||||
write!(f, "{}", start_or_comma())?;
|
||||
write!(f, "{p:?}")?;
|
||||
}
|
||||
write!(f, ")")
|
||||
}
|
||||
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
|
||||
// be careful to detect strings here. However a string literal pattern will never
|
||||
// be reported as a non-exhaustiveness witness, so we can ignore this issue.
|
||||
ty::Ref(_, _, mutbl) => {
|
||||
let subpattern = self.iter_fields().next().unwrap();
|
||||
write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
|
||||
}
|
||||
_ => write!(f, "_"),
|
||||
},
|
||||
Slice(slice) => {
|
||||
let mut subpatterns = self.fields.iter_patterns();
|
||||
write!(f, "[")?;
|
||||
match slice.kind {
|
||||
FixedLen(_) => {
|
||||
for p in subpatterns {
|
||||
write!(f, "{}{:?}", start_or_comma(), p)?;
|
||||
}
|
||||
}
|
||||
VarLen(prefix_len, _) => {
|
||||
for p in subpatterns.by_ref().take(prefix_len) {
|
||||
write!(f, "{}{:?}", start_or_comma(), p)?;
|
||||
}
|
||||
write!(f, "{}", start_or_comma())?;
|
||||
write!(f, "..")?;
|
||||
for p in subpatterns {
|
||||
write!(f, "{}{:?}", start_or_comma(), p)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
write!(f, "]")
|
||||
}
|
||||
Bool(b) => write!(f, "{b}"),
|
||||
// Best-effort, will render signed ranges incorrectly
|
||||
IntRange(range) => write!(f, "{range:?}"),
|
||||
F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
|
||||
F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
|
||||
Str(value) => write!(f, "{value}"),
|
||||
Opaque(..) => write!(f, "<constant pattern>"),
|
||||
Or => {
|
||||
for pat in self.iter_fields() {
|
||||
write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
Wildcard | Missing { .. } | NonExhaustive | Hidden => write!(f, "_ : {:?}", self.ty),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
|
||||
/// purposes. As such they don't use interning and can be cloned.
|
||||
#[derive(Debug, Clone)]
|
||||
pub(crate) struct WitnessPat<'tcx> {
|
||||
ctor: Constructor<'tcx>,
|
||||
pub(crate) fields: Vec<WitnessPat<'tcx>>,
|
||||
ty: Ty<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> WitnessPat<'tcx> {
|
||||
pub(super) fn new(ctor: Constructor<'tcx>, fields: Vec<Self>, ty: Ty<'tcx>) -> Self {
|
||||
Self { ctor, fields, ty }
|
||||
}
|
||||
pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
|
||||
Self::new(Wildcard, Vec::new(), ty)
|
||||
}
|
||||
|
||||
/// Construct a pattern that matches everything that starts with this constructor.
|
||||
/// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
|
||||
/// `Some(_)`.
|
||||
pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, '_, 'tcx>, ctor: Constructor<'tcx>) -> Self {
|
||||
// Reuse `Fields::wildcards` to get the types.
|
||||
let fields = Fields::wildcards(pcx, &ctor)
|
||||
.iter_patterns()
|
||||
.map(|deco_pat| Self::wildcard(deco_pat.ty()))
|
||||
.collect();
|
||||
Self::new(ctor, fields, pcx.ty)
|
||||
}
|
||||
|
||||
pub(super) fn ctor(&self) -> &Constructor<'tcx> {
|
||||
&self.ctor
|
||||
}
|
||||
pub(super) fn ty(&self) -> Ty<'tcx> {
|
||||
self.ty
|
||||
}
|
||||
|
||||
/// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't
|
||||
/// appear in diagnostics, like float ranges.
|
||||
pub(crate) fn to_diagnostic_pat(&self, cx: &MatchCheckCtxt<'_, 'tcx>) -> Pat<'tcx> {
|
||||
let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
|
||||
let mut subpatterns = self.iter_fields().map(|p| Box::new(p.to_diagnostic_pat(cx)));
|
||||
let kind = match &self.ctor {
|
||||
Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
|
||||
IntRange(range) => return range.to_diagnostic_pat(self.ty, cx.tcx),
|
||||
Single | Variant(_) => match self.ty.kind() {
|
||||
ty::Tuple(..) => PatKind::Leaf {
|
||||
subpatterns: subpatterns
|
||||
.enumerate()
|
||||
.map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
|
||||
.collect(),
|
||||
},
|
||||
ty::Adt(adt_def, _) if adt_def.is_box() => {
|
||||
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
|
||||
// of `std`). So this branch is only reachable when the feature is enabled and
|
||||
// the pattern is a box pattern.
|
||||
PatKind::Deref { subpattern: subpatterns.next().unwrap() }
|
||||
}
|
||||
ty::Adt(adt_def, args) => {
|
||||
let variant_index = self.ctor.variant_index_for_adt(*adt_def);
|
||||
let variant = &adt_def.variant(variant_index);
|
||||
let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
|
||||
.zip(subpatterns)
|
||||
.map(|((field, _ty), pattern)| FieldPat { field, pattern })
|
||||
.collect();
|
||||
|
||||
if adt_def.is_enum() {
|
||||
PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns }
|
||||
} else {
|
||||
PatKind::Leaf { subpatterns }
|
||||
}
|
||||
}
|
||||
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
|
||||
// be careful to reconstruct the correct constant pattern here. However a string
|
||||
// literal pattern will never be reported as a non-exhaustiveness witness, so we
|
||||
// ignore this issue.
|
||||
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
|
||||
_ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
|
||||
},
|
||||
Slice(slice) => {
|
||||
match slice.kind {
|
||||
FixedLen(_) => PatKind::Slice {
|
||||
prefix: subpatterns.collect(),
|
||||
slice: None,
|
||||
suffix: Box::new([]),
|
||||
},
|
||||
VarLen(prefix, _) => {
|
||||
let mut subpatterns = subpatterns.peekable();
|
||||
let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
|
||||
if slice.array_len.is_some() {
|
||||
// Improves diagnostics a bit: if the type is a known-size array, instead
|
||||
// of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
|
||||
// This is incorrect if the size is not known, since `[_, ..]` captures
|
||||
// arrays of lengths `>= 1` whereas `[..]` captures any length.
|
||||
while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
|
||||
prefix.pop();
|
||||
}
|
||||
while subpatterns.peek().is_some()
|
||||
&& is_wildcard(subpatterns.peek().unwrap())
|
||||
{
|
||||
subpatterns.next();
|
||||
}
|
||||
}
|
||||
let suffix: Box<[_]> = subpatterns.collect();
|
||||
let wild = Pat::wildcard_from_ty(self.ty);
|
||||
PatKind::Slice {
|
||||
prefix: prefix.into_boxed_slice(),
|
||||
slice: Some(Box::new(wild)),
|
||||
suffix,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
&Str(value) => PatKind::Constant { value },
|
||||
Wildcard | NonExhaustive | Hidden => PatKind::Wild,
|
||||
Missing { .. } => bug!(
|
||||
"trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
|
||||
`Missing` should have been processed in `apply_constructors`"
|
||||
),
|
||||
F32Range(..) | F64Range(..) | Opaque(..) | Or => {
|
||||
bug!("can't convert to pattern: {:?}", self)
|
||||
}
|
||||
};
|
||||
|
||||
Pat { ty: self.ty, span: DUMMY_SP, kind }
|
||||
}
|
||||
|
||||
pub(super) fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<'tcx>> {
|
||||
self.fields.iter()
|
||||
}
|
||||
}
|
95
compiler/rustc_pattern_analysis/src/errors.rs
Normal file
95
compiler/rustc_pattern_analysis/src/errors.rs
Normal file
@ -0,0 +1,95 @@
|
||||
use crate::{pat::WitnessPat, usefulness::MatchCheckCtxt};
|
||||
|
||||
use rustc_errors::{AddToDiagnostic, Diagnostic, SubdiagnosticMessage};
|
||||
use rustc_macros::{LintDiagnostic, Subdiagnostic};
|
||||
use rustc_middle::thir::Pat;
|
||||
use rustc_middle::ty::Ty;
|
||||
use rustc_span::Span;
|
||||
|
||||
#[derive(Subdiagnostic)]
|
||||
#[label(pattern_analysis_uncovered)]
|
||||
pub struct Uncovered<'tcx> {
|
||||
#[primary_span]
|
||||
span: Span,
|
||||
count: usize,
|
||||
witness_1: Pat<'tcx>,
|
||||
witness_2: Pat<'tcx>,
|
||||
witness_3: Pat<'tcx>,
|
||||
remainder: usize,
|
||||
}
|
||||
|
||||
impl<'tcx> Uncovered<'tcx> {
|
||||
pub fn new<'p>(
|
||||
span: Span,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
witnesses: Vec<WitnessPat<'tcx>>,
|
||||
) -> Self {
|
||||
let witness_1 = witnesses.get(0).unwrap().to_diagnostic_pat(cx);
|
||||
Self {
|
||||
span,
|
||||
count: witnesses.len(),
|
||||
// Substitute dummy values if witnesses is smaller than 3. These will never be read.
|
||||
witness_2: witnesses
|
||||
.get(1)
|
||||
.map(|w| w.to_diagnostic_pat(cx))
|
||||
.unwrap_or_else(|| witness_1.clone()),
|
||||
witness_3: witnesses
|
||||
.get(2)
|
||||
.map(|w| w.to_diagnostic_pat(cx))
|
||||
.unwrap_or_else(|| witness_1.clone()),
|
||||
witness_1,
|
||||
remainder: witnesses.len().saturating_sub(3),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(LintDiagnostic)]
|
||||
#[diag(pattern_analysis_overlapping_range_endpoints)]
|
||||
#[note]
|
||||
pub struct OverlappingRangeEndpoints<'tcx> {
|
||||
#[label]
|
||||
pub range: Span,
|
||||
#[subdiagnostic]
|
||||
pub overlap: Vec<Overlap<'tcx>>,
|
||||
}
|
||||
|
||||
pub struct Overlap<'tcx> {
|
||||
pub span: Span,
|
||||
pub range: Pat<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> AddToDiagnostic for Overlap<'tcx> {
|
||||
fn add_to_diagnostic_with<F>(self, diag: &mut Diagnostic, _: F)
|
||||
where
|
||||
F: Fn(&mut Diagnostic, SubdiagnosticMessage) -> SubdiagnosticMessage,
|
||||
{
|
||||
let Overlap { span, range } = self;
|
||||
|
||||
// FIXME(mejrs) unfortunately `#[derive(LintDiagnostic)]`
|
||||
// does not support `#[subdiagnostic(eager)]`...
|
||||
let message = format!("this range overlaps on `{range}`...");
|
||||
diag.span_label(span, message);
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(LintDiagnostic)]
|
||||
#[diag(pattern_analysis_non_exhaustive_omitted_pattern)]
|
||||
#[help]
|
||||
#[note]
|
||||
pub(crate) struct NonExhaustiveOmittedPattern<'tcx> {
|
||||
pub scrut_ty: Ty<'tcx>,
|
||||
#[subdiagnostic]
|
||||
pub uncovered: Uncovered<'tcx>,
|
||||
}
|
||||
|
||||
#[derive(LintDiagnostic)]
|
||||
#[diag(pattern_analysis_non_exhaustive_omitted_pattern_lint_on_arm)]
|
||||
#[help]
|
||||
pub(crate) struct NonExhaustiveOmittedPatternLintOnArm {
|
||||
#[label]
|
||||
pub lint_span: Span,
|
||||
#[suggestion(code = "#[{lint_level}({lint_name})]\n", applicability = "maybe-incorrect")]
|
||||
pub suggest_lint_on_match: Option<Span>,
|
||||
pub lint_level: &'static str,
|
||||
pub lint_name: &'static str,
|
||||
}
|
13
compiler/rustc_pattern_analysis/src/lib.rs
Normal file
13
compiler/rustc_pattern_analysis/src/lib.rs
Normal file
@ -0,0 +1,13 @@
|
||||
//! Analysis of patterns, notably match exhaustiveness checking.
|
||||
|
||||
pub mod constructor;
|
||||
pub mod errors;
|
||||
pub mod pat;
|
||||
pub mod usefulness;
|
||||
|
||||
#[macro_use]
|
||||
extern crate tracing;
|
||||
#[macro_use]
|
||||
extern crate rustc_middle;
|
||||
|
||||
rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
|
744
compiler/rustc_pattern_analysis/src/pat.rs
Normal file
744
compiler/rustc_pattern_analysis/src/pat.rs
Normal file
@ -0,0 +1,744 @@
|
||||
//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
|
||||
//! fields. This file defines types that represent patterns in this way.
|
||||
use std::cell::Cell;
|
||||
use std::fmt;
|
||||
use std::iter::once;
|
||||
|
||||
use smallvec::{smallvec, SmallVec};
|
||||
|
||||
use rustc_data_structures::captures::Captures;
|
||||
use rustc_hir::RangeEnd;
|
||||
use rustc_index::Idx;
|
||||
use rustc_middle::mir;
|
||||
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
|
||||
use rustc_middle::ty::{self, Ty, VariantDef};
|
||||
use rustc_span::{Span, DUMMY_SP};
|
||||
use rustc_target::abi::FieldIdx;
|
||||
|
||||
use self::Constructor::*;
|
||||
use self::SliceKind::*;
|
||||
|
||||
use crate::constructor::{Constructor, IntRange, MaybeInfiniteInt, OpaqueId, Slice, SliceKind};
|
||||
use crate::usefulness::{MatchCheckCtxt, PatCtxt};
|
||||
|
||||
/// A value can be decomposed into a constructor applied to some fields. This struct represents
|
||||
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
|
||||
///
|
||||
/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
|
||||
/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
|
||||
/// given a pattern we fill some of the fields with its subpatterns.
|
||||
/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
|
||||
/// `extract_pattern_arguments` we fill some of the entries, and the result is
|
||||
/// `[Some(0), _, _, _]`.
|
||||
/// ```compile_fail,E0004
|
||||
/// # fn foo() -> [Option<u8>; 4] { [None; 4] }
|
||||
/// let x: [Option<u8>; 4] = foo();
|
||||
/// match x {
|
||||
/// [Some(0), ..] => {}
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// Note that the number of fields of a constructor may not match the fields declared in the
|
||||
/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
|
||||
/// because the code mustn't observe that it is uninhabited. In that case that field is not
|
||||
/// included in `fields`. For that reason, when you have a `FieldIdx` you must use
|
||||
/// `index_with_declared_idx`.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Fields<'p, 'tcx> {
|
||||
fields: &'p [DeconstructedPat<'p, 'tcx>],
|
||||
}
|
||||
|
||||
impl<'p, 'tcx> Fields<'p, 'tcx> {
|
||||
fn empty() -> Self {
|
||||
Fields { fields: &[] }
|
||||
}
|
||||
|
||||
fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
|
||||
let field: &_ = cx.pattern_arena.alloc(field);
|
||||
Fields { fields: std::slice::from_ref(field) }
|
||||
}
|
||||
|
||||
pub fn from_iter(
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
|
||||
) -> Self {
|
||||
let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
|
||||
Fields { fields }
|
||||
}
|
||||
|
||||
fn wildcards_from_tys(
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
tys: impl IntoIterator<Item = Ty<'tcx>>,
|
||||
) -> Self {
|
||||
Fields::from_iter(cx, tys.into_iter().map(|ty| DeconstructedPat::wildcard(ty, DUMMY_SP)))
|
||||
}
|
||||
|
||||
// In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
|
||||
// uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
|
||||
// This lists the fields we keep along with their types.
|
||||
pub(crate) fn list_variant_nonhidden_fields<'a>(
|
||||
cx: &'a MatchCheckCtxt<'p, 'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
variant: &'a VariantDef,
|
||||
) -> impl Iterator<Item = (FieldIdx, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
|
||||
let ty::Adt(adt, args) = ty.kind() else { bug!() };
|
||||
// Whether we must not match the fields of this variant exhaustively.
|
||||
let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
|
||||
|
||||
variant.fields.iter().enumerate().filter_map(move |(i, field)| {
|
||||
let ty = field.ty(cx.tcx, args);
|
||||
// `field.ty()` doesn't normalize after substituting.
|
||||
let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
|
||||
let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
|
||||
let is_uninhabited = cx.tcx.features().exhaustive_patterns && cx.is_uninhabited(ty);
|
||||
|
||||
if is_uninhabited && (!is_visible || is_non_exhaustive) {
|
||||
None
|
||||
} else {
|
||||
Some((FieldIdx::new(i), ty))
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new list of wildcard fields for a given constructor. The result must have a
|
||||
/// length of `constructor.arity()`.
|
||||
#[instrument(level = "trace")]
|
||||
pub(super) fn wildcards(pcx: &PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
|
||||
let ret = match constructor {
|
||||
Single | Variant(_) => match pcx.ty.kind() {
|
||||
ty::Tuple(fs) => Fields::wildcards_from_tys(pcx.cx, fs.iter()),
|
||||
ty::Ref(_, rty, _) => Fields::wildcards_from_tys(pcx.cx, once(*rty)),
|
||||
ty::Adt(adt, args) => {
|
||||
if adt.is_box() {
|
||||
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
||||
// patterns. If we're here we can assume this is a box pattern.
|
||||
Fields::wildcards_from_tys(pcx.cx, once(args.type_at(0)))
|
||||
} else {
|
||||
let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
|
||||
let tys = Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
|
||||
.map(|(_, ty)| ty);
|
||||
Fields::wildcards_from_tys(pcx.cx, tys)
|
||||
}
|
||||
}
|
||||
_ => bug!("Unexpected type for `Single` constructor: {:?}", pcx),
|
||||
},
|
||||
Slice(slice) => match *pcx.ty.kind() {
|
||||
ty::Slice(ty) | ty::Array(ty, _) => {
|
||||
let arity = slice.arity();
|
||||
Fields::wildcards_from_tys(pcx.cx, (0..arity).map(|_| ty))
|
||||
}
|
||||
_ => bug!("bad slice pattern {:?} {:?}", constructor, pcx),
|
||||
},
|
||||
Bool(..)
|
||||
| IntRange(..)
|
||||
| F32Range(..)
|
||||
| F64Range(..)
|
||||
| Str(..)
|
||||
| Opaque(..)
|
||||
| NonExhaustive
|
||||
| Hidden
|
||||
| Missing { .. }
|
||||
| Wildcard => Fields::empty(),
|
||||
Or => {
|
||||
bug!("called `Fields::wildcards` on an `Or` ctor")
|
||||
}
|
||||
};
|
||||
debug!(?ret);
|
||||
ret
|
||||
}
|
||||
|
||||
/// Returns the list of patterns.
|
||||
pub(super) fn iter_patterns<'a>(
|
||||
&'a self,
|
||||
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
|
||||
self.fields.iter()
|
||||
}
|
||||
}
|
||||
|
||||
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
|
||||
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
|
||||
fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
|
||||
if let PatKind::Or { pats } = &pat.kind {
|
||||
for pat in pats.iter() {
|
||||
expand(pat, vec);
|
||||
}
|
||||
} else {
|
||||
vec.push(pat)
|
||||
}
|
||||
}
|
||||
|
||||
let mut pats = Vec::new();
|
||||
expand(pat, &mut pats);
|
||||
pats
|
||||
}
|
||||
|
||||
/// Values and patterns can be represented as a constructor applied to some fields. This represents
|
||||
/// a pattern in this form.
|
||||
/// This also uses interior mutability to keep track of whether the pattern has been found reachable
|
||||
/// during analysis. For this reason they cannot be cloned.
|
||||
/// A `DeconstructedPat` will almost always come from user input; the only exception are some
|
||||
/// `Wildcard`s introduced during specialization.
|
||||
pub struct DeconstructedPat<'p, 'tcx> {
|
||||
ctor: Constructor<'tcx>,
|
||||
fields: Fields<'p, 'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
span: Span,
|
||||
/// Whether removing this arm would change the behavior of the match expression.
|
||||
useful: Cell<bool>,
|
||||
}
|
||||
|
||||
impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
|
||||
pub(super) fn wildcard(ty: Ty<'tcx>, span: Span) -> Self {
|
||||
Self::new(Wildcard, Fields::empty(), ty, span)
|
||||
}
|
||||
|
||||
pub(super) fn new(
|
||||
ctor: Constructor<'tcx>,
|
||||
fields: Fields<'p, 'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
span: Span,
|
||||
) -> Self {
|
||||
DeconstructedPat { ctor, fields, ty, span, useful: Cell::new(false) }
|
||||
}
|
||||
|
||||
/// Note: the input patterns must have been lowered through
|
||||
/// `rustc_mir_build::thir::pattern::check_match::MatchVisitor::lower_pattern`.
|
||||
pub fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
|
||||
let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
|
||||
let ctor;
|
||||
let fields;
|
||||
match &pat.kind {
|
||||
PatKind::AscribeUserType { subpattern, .. }
|
||||
| PatKind::InlineConstant { subpattern, .. } => return mkpat(subpattern),
|
||||
PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
|
||||
PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
|
||||
ctor = Wildcard;
|
||||
fields = Fields::empty();
|
||||
}
|
||||
PatKind::Deref { subpattern } => {
|
||||
ctor = Single;
|
||||
fields = Fields::singleton(cx, mkpat(subpattern));
|
||||
}
|
||||
PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
|
||||
match pat.ty.kind() {
|
||||
ty::Tuple(fs) => {
|
||||
ctor = Single;
|
||||
let mut wilds: SmallVec<[_; 2]> =
|
||||
fs.iter().map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
|
||||
for pat in subpatterns {
|
||||
wilds[pat.field.index()] = mkpat(&pat.pattern);
|
||||
}
|
||||
fields = Fields::from_iter(cx, wilds);
|
||||
}
|
||||
ty::Adt(adt, args) if adt.is_box() => {
|
||||
// The only legal patterns of type `Box` (outside `std`) are `_` and box
|
||||
// patterns. If we're here we can assume this is a box pattern.
|
||||
// FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
|
||||
// _)` or a box pattern. As a hack to avoid an ICE with the former, we
|
||||
// ignore other fields than the first one. This will trigger an error later
|
||||
// anyway.
|
||||
// See https://github.com/rust-lang/rust/issues/82772 ,
|
||||
// explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
|
||||
// The problem is that we can't know from the type whether we'll match
|
||||
// normally or through box-patterns. We'll have to figure out a proper
|
||||
// solution when we introduce generalized deref patterns. Also need to
|
||||
// prevent mixing of those two options.
|
||||
let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
|
||||
let pat = if let Some(pat) = pattern {
|
||||
mkpat(&pat.pattern)
|
||||
} else {
|
||||
DeconstructedPat::wildcard(args.type_at(0), pat.span)
|
||||
};
|
||||
ctor = Single;
|
||||
fields = Fields::singleton(cx, pat);
|
||||
}
|
||||
ty::Adt(adt, _) => {
|
||||
ctor = match pat.kind {
|
||||
PatKind::Leaf { .. } => Single,
|
||||
PatKind::Variant { variant_index, .. } => Variant(variant_index),
|
||||
_ => bug!(),
|
||||
};
|
||||
let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
|
||||
// For each field in the variant, we store the relevant index into `self.fields` if any.
|
||||
let mut field_id_to_id: Vec<Option<usize>> =
|
||||
(0..variant.fields.len()).map(|_| None).collect();
|
||||
let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
|
||||
.enumerate()
|
||||
.map(|(i, (field, ty))| {
|
||||
field_id_to_id[field.index()] = Some(i);
|
||||
ty
|
||||
});
|
||||
let mut wilds: SmallVec<[_; 2]> =
|
||||
tys.map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
|
||||
for pat in subpatterns {
|
||||
if let Some(i) = field_id_to_id[pat.field.index()] {
|
||||
wilds[i] = mkpat(&pat.pattern);
|
||||
}
|
||||
}
|
||||
fields = Fields::from_iter(cx, wilds);
|
||||
}
|
||||
_ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
|
||||
}
|
||||
}
|
||||
PatKind::Constant { value } => {
|
||||
match pat.ty.kind() {
|
||||
ty::Bool => {
|
||||
ctor = match value.try_eval_bool(cx.tcx, cx.param_env) {
|
||||
Some(b) => Bool(b),
|
||||
None => Opaque(OpaqueId::new()),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
ty::Char | ty::Int(_) | ty::Uint(_) => {
|
||||
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
||||
Some(bits) => IntRange(IntRange::from_bits(cx.tcx, pat.ty, bits)),
|
||||
None => Opaque(OpaqueId::new()),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
ty::Float(ty::FloatTy::F32) => {
|
||||
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
||||
Some(bits) => {
|
||||
use rustc_apfloat::Float;
|
||||
let value = rustc_apfloat::ieee::Single::from_bits(bits);
|
||||
F32Range(value, value, RangeEnd::Included)
|
||||
}
|
||||
None => Opaque(OpaqueId::new()),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
ty::Float(ty::FloatTy::F64) => {
|
||||
ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
|
||||
Some(bits) => {
|
||||
use rustc_apfloat::Float;
|
||||
let value = rustc_apfloat::ieee::Double::from_bits(bits);
|
||||
F64Range(value, value, RangeEnd::Included)
|
||||
}
|
||||
None => Opaque(OpaqueId::new()),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
ty::Ref(_, t, _) if t.is_str() => {
|
||||
// We want a `&str` constant to behave like a `Deref` pattern, to be compatible
|
||||
// with other `Deref` patterns. This could have been done in `const_to_pat`,
|
||||
// but that causes issues with the rest of the matching code.
|
||||
// So here, the constructor for a `"foo"` pattern is `&` (represented by
|
||||
// `Single`), and has one field. That field has constructor `Str(value)` and no
|
||||
// fields.
|
||||
// Note: `t` is `str`, not `&str`.
|
||||
let subpattern =
|
||||
DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
|
||||
ctor = Single;
|
||||
fields = Fields::singleton(cx, subpattern)
|
||||
}
|
||||
// All constants that can be structurally matched have already been expanded
|
||||
// into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
|
||||
// opaque.
|
||||
_ => {
|
||||
ctor = Opaque(OpaqueId::new());
|
||||
fields = Fields::empty();
|
||||
}
|
||||
}
|
||||
}
|
||||
PatKind::Range(patrange) => {
|
||||
let PatRange { lo, hi, end, .. } = patrange.as_ref();
|
||||
let ty = pat.ty;
|
||||
ctor = match ty.kind() {
|
||||
ty::Char | ty::Int(_) | ty::Uint(_) => {
|
||||
let lo =
|
||||
MaybeInfiniteInt::from_pat_range_bdy(*lo, ty, cx.tcx, cx.param_env);
|
||||
let hi =
|
||||
MaybeInfiniteInt::from_pat_range_bdy(*hi, ty, cx.tcx, cx.param_env);
|
||||
IntRange(IntRange::from_range(lo, hi, *end))
|
||||
}
|
||||
ty::Float(fty) => {
|
||||
use rustc_apfloat::Float;
|
||||
let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
|
||||
let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
|
||||
match fty {
|
||||
ty::FloatTy::F32 => {
|
||||
use rustc_apfloat::ieee::Single;
|
||||
let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
|
||||
let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
|
||||
F32Range(lo, hi, *end)
|
||||
}
|
||||
ty::FloatTy::F64 => {
|
||||
use rustc_apfloat::ieee::Double;
|
||||
let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
|
||||
let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
|
||||
F64Range(lo, hi, *end)
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => bug!("invalid type for range pattern: {}", ty),
|
||||
};
|
||||
fields = Fields::empty();
|
||||
}
|
||||
PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
|
||||
let array_len = match pat.ty.kind() {
|
||||
ty::Array(_, length) => {
|
||||
Some(length.eval_target_usize(cx.tcx, cx.param_env) as usize)
|
||||
}
|
||||
ty::Slice(_) => None,
|
||||
_ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
|
||||
};
|
||||
let kind = if slice.is_some() {
|
||||
VarLen(prefix.len(), suffix.len())
|
||||
} else {
|
||||
FixedLen(prefix.len() + suffix.len())
|
||||
};
|
||||
ctor = Slice(Slice::new(array_len, kind));
|
||||
fields =
|
||||
Fields::from_iter(cx, prefix.iter().chain(suffix.iter()).map(|p| mkpat(&*p)));
|
||||
}
|
||||
PatKind::Or { .. } => {
|
||||
ctor = Or;
|
||||
let pats = expand_or_pat(pat);
|
||||
fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
|
||||
}
|
||||
PatKind::Never => {
|
||||
// FIXME(never_patterns): handle `!` in exhaustiveness. This is a sane default
|
||||
// in the meantime.
|
||||
ctor = Wildcard;
|
||||
fields = Fields::empty();
|
||||
}
|
||||
PatKind::Error(_) => {
|
||||
ctor = Opaque(OpaqueId::new());
|
||||
fields = Fields::empty();
|
||||
}
|
||||
}
|
||||
DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
|
||||
}
|
||||
|
||||
pub(super) fn is_or_pat(&self) -> bool {
|
||||
matches!(self.ctor, Or)
|
||||
}
|
||||
/// Expand this (possibly-nested) or-pattern into its alternatives.
|
||||
pub(super) fn flatten_or_pat(&'p self) -> SmallVec<[&'p Self; 1]> {
|
||||
if self.is_or_pat() {
|
||||
self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect()
|
||||
} else {
|
||||
smallvec![self]
|
||||
}
|
||||
}
|
||||
|
||||
pub fn ctor(&self) -> &Constructor<'tcx> {
|
||||
&self.ctor
|
||||
}
|
||||
pub fn ty(&self) -> Ty<'tcx> {
|
||||
self.ty
|
||||
}
|
||||
pub fn span(&self) -> Span {
|
||||
self.span
|
||||
}
|
||||
|
||||
pub fn iter_fields<'a>(
|
||||
&'a self,
|
||||
) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
|
||||
self.fields.iter_patterns()
|
||||
}
|
||||
|
||||
/// Specialize this pattern with a constructor.
|
||||
/// `other_ctor` can be different from `self.ctor`, but must be covered by it.
|
||||
pub(super) fn specialize<'a>(
|
||||
&'a self,
|
||||
pcx: &PatCtxt<'_, 'p, 'tcx>,
|
||||
other_ctor: &Constructor<'tcx>,
|
||||
) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
|
||||
match (&self.ctor, other_ctor) {
|
||||
(Wildcard, _) => {
|
||||
// We return a wildcard for each field of `other_ctor`.
|
||||
Fields::wildcards(pcx, other_ctor).iter_patterns().collect()
|
||||
}
|
||||
(Slice(self_slice), Slice(other_slice))
|
||||
if self_slice.arity() != other_slice.arity() =>
|
||||
{
|
||||
// The only tricky case: two slices of different arity. Since `self_slice` covers
|
||||
// `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
|
||||
// `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
|
||||
// arity. So we fill the middle part with enough wildcards to reach the length of
|
||||
// the new, larger slice.
|
||||
match self_slice.kind {
|
||||
FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
|
||||
VarLen(prefix, suffix) => {
|
||||
let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
|
||||
bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
|
||||
};
|
||||
let prefix = &self.fields.fields[..prefix];
|
||||
let suffix = &self.fields.fields[self_slice.arity() - suffix..];
|
||||
let wildcard: &_ = pcx
|
||||
.cx
|
||||
.pattern_arena
|
||||
.alloc(DeconstructedPat::wildcard(inner_ty, DUMMY_SP));
|
||||
let extra_wildcards = other_slice.arity() - self_slice.arity();
|
||||
let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
|
||||
prefix.iter().chain(extra_wildcards).chain(suffix).collect()
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => self.fields.iter_patterns().collect(),
|
||||
}
|
||||
}
|
||||
|
||||
/// We keep track for each pattern if it was ever useful during the analysis. This is used
|
||||
/// with `redundant_spans` to report redundant subpatterns arising from or patterns.
|
||||
pub(super) fn set_useful(&self) {
|
||||
self.useful.set(true)
|
||||
}
|
||||
pub(super) fn is_useful(&self) -> bool {
|
||||
if self.useful.get() {
|
||||
true
|
||||
} else if self.is_or_pat() && self.iter_fields().any(|f| f.is_useful()) {
|
||||
// We always expand or patterns in the matrix, so we will never see the actual
|
||||
// or-pattern (the one with constructor `Or`) in the column. As such, it will not be
|
||||
// marked as useful itself, only its children will. We recover this information here.
|
||||
self.set_useful();
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/// Report the spans of subpatterns that were not useful, if any.
|
||||
pub(super) fn redundant_spans(&self) -> Vec<Span> {
|
||||
let mut spans = Vec::new();
|
||||
self.collect_redundant_spans(&mut spans);
|
||||
spans
|
||||
}
|
||||
fn collect_redundant_spans(&self, spans: &mut Vec<Span>) {
|
||||
// We don't look at subpatterns if we already reported the whole pattern as redundant.
|
||||
if !self.is_useful() {
|
||||
spans.push(self.span);
|
||||
} else {
|
||||
for p in self.iter_fields() {
|
||||
p.collect_redundant_spans(spans);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
|
||||
/// `Display` impl.
|
||||
impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
// Printing lists is a chore.
|
||||
let mut first = true;
|
||||
let mut start_or_continue = |s| {
|
||||
if first {
|
||||
first = false;
|
||||
""
|
||||
} else {
|
||||
s
|
||||
}
|
||||
};
|
||||
let mut start_or_comma = || start_or_continue(", ");
|
||||
|
||||
match &self.ctor {
|
||||
Single | Variant(_) => match self.ty.kind() {
|
||||
ty::Adt(def, _) if def.is_box() => {
|
||||
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
|
||||
// of `std`). So this branch is only reachable when the feature is enabled and
|
||||
// the pattern is a box pattern.
|
||||
let subpattern = self.iter_fields().next().unwrap();
|
||||
write!(f, "box {subpattern:?}")
|
||||
}
|
||||
ty::Adt(..) | ty::Tuple(..) => {
|
||||
let variant = match self.ty.kind() {
|
||||
ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
|
||||
ty::Tuple(_) => None,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
if let Some(variant) = variant {
|
||||
write!(f, "{}", variant.name)?;
|
||||
}
|
||||
|
||||
// Without `cx`, we can't know which field corresponds to which, so we can't
|
||||
// get the names of the fields. Instead we just display everything as a tuple
|
||||
// struct, which should be good enough.
|
||||
write!(f, "(")?;
|
||||
for p in self.iter_fields() {
|
||||
write!(f, "{}", start_or_comma())?;
|
||||
write!(f, "{p:?}")?;
|
||||
}
|
||||
write!(f, ")")
|
||||
}
|
||||
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
|
||||
// be careful to detect strings here. However a string literal pattern will never
|
||||
// be reported as a non-exhaustiveness witness, so we can ignore this issue.
|
||||
ty::Ref(_, _, mutbl) => {
|
||||
let subpattern = self.iter_fields().next().unwrap();
|
||||
write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
|
||||
}
|
||||
_ => write!(f, "_"),
|
||||
},
|
||||
Slice(slice) => {
|
||||
let mut subpatterns = self.fields.iter_patterns();
|
||||
write!(f, "[")?;
|
||||
match slice.kind {
|
||||
FixedLen(_) => {
|
||||
for p in subpatterns {
|
||||
write!(f, "{}{:?}", start_or_comma(), p)?;
|
||||
}
|
||||
}
|
||||
VarLen(prefix_len, _) => {
|
||||
for p in subpatterns.by_ref().take(prefix_len) {
|
||||
write!(f, "{}{:?}", start_or_comma(), p)?;
|
||||
}
|
||||
write!(f, "{}", start_or_comma())?;
|
||||
write!(f, "..")?;
|
||||
for p in subpatterns {
|
||||
write!(f, "{}{:?}", start_or_comma(), p)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
write!(f, "]")
|
||||
}
|
||||
Bool(b) => write!(f, "{b}"),
|
||||
// Best-effort, will render signed ranges incorrectly
|
||||
IntRange(range) => write!(f, "{range:?}"),
|
||||
F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
|
||||
F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
|
||||
Str(value) => write!(f, "{value}"),
|
||||
Opaque(..) => write!(f, "<constant pattern>"),
|
||||
Or => {
|
||||
for pat in self.iter_fields() {
|
||||
write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
Wildcard | Missing { .. } | NonExhaustive | Hidden => write!(f, "_ : {:?}", self.ty),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
|
||||
/// purposes. As such they don't use interning and can be cloned.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct WitnessPat<'tcx> {
|
||||
ctor: Constructor<'tcx>,
|
||||
pub(crate) fields: Vec<WitnessPat<'tcx>>,
|
||||
ty: Ty<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> WitnessPat<'tcx> {
|
||||
pub(super) fn new(ctor: Constructor<'tcx>, fields: Vec<Self>, ty: Ty<'tcx>) -> Self {
|
||||
Self { ctor, fields, ty }
|
||||
}
|
||||
pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
|
||||
Self::new(Wildcard, Vec::new(), ty)
|
||||
}
|
||||
|
||||
/// Construct a pattern that matches everything that starts with this constructor.
|
||||
/// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
|
||||
/// `Some(_)`.
|
||||
pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, '_, 'tcx>, ctor: Constructor<'tcx>) -> Self {
|
||||
// Reuse `Fields::wildcards` to get the types.
|
||||
let fields = Fields::wildcards(pcx, &ctor)
|
||||
.iter_patterns()
|
||||
.map(|deco_pat| Self::wildcard(deco_pat.ty()))
|
||||
.collect();
|
||||
Self::new(ctor, fields, pcx.ty)
|
||||
}
|
||||
|
||||
pub fn ctor(&self) -> &Constructor<'tcx> {
|
||||
&self.ctor
|
||||
}
|
||||
pub fn ty(&self) -> Ty<'tcx> {
|
||||
self.ty
|
||||
}
|
||||
|
||||
/// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't
|
||||
/// appear in diagnostics, like float ranges.
|
||||
pub fn to_diagnostic_pat(&self, cx: &MatchCheckCtxt<'_, 'tcx>) -> Pat<'tcx> {
|
||||
let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
|
||||
let mut subpatterns = self.iter_fields().map(|p| Box::new(p.to_diagnostic_pat(cx)));
|
||||
let kind = match &self.ctor {
|
||||
Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
|
||||
IntRange(range) => return range.to_diagnostic_pat(self.ty, cx.tcx),
|
||||
Single | Variant(_) => match self.ty.kind() {
|
||||
ty::Tuple(..) => PatKind::Leaf {
|
||||
subpatterns: subpatterns
|
||||
.enumerate()
|
||||
.map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
|
||||
.collect(),
|
||||
},
|
||||
ty::Adt(adt_def, _) if adt_def.is_box() => {
|
||||
// Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
|
||||
// of `std`). So this branch is only reachable when the feature is enabled and
|
||||
// the pattern is a box pattern.
|
||||
PatKind::Deref { subpattern: subpatterns.next().unwrap() }
|
||||
}
|
||||
ty::Adt(adt_def, args) => {
|
||||
let variant_index = self.ctor.variant_index_for_adt(*adt_def);
|
||||
let variant = &adt_def.variant(variant_index);
|
||||
let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
|
||||
.zip(subpatterns)
|
||||
.map(|((field, _ty), pattern)| FieldPat { field, pattern })
|
||||
.collect();
|
||||
|
||||
if adt_def.is_enum() {
|
||||
PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns }
|
||||
} else {
|
||||
PatKind::Leaf { subpatterns }
|
||||
}
|
||||
}
|
||||
// Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
|
||||
// be careful to reconstruct the correct constant pattern here. However a string
|
||||
// literal pattern will never be reported as a non-exhaustiveness witness, so we
|
||||
// ignore this issue.
|
||||
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
|
||||
_ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
|
||||
},
|
||||
Slice(slice) => {
|
||||
match slice.kind {
|
||||
FixedLen(_) => PatKind::Slice {
|
||||
prefix: subpatterns.collect(),
|
||||
slice: None,
|
||||
suffix: Box::new([]),
|
||||
},
|
||||
VarLen(prefix, _) => {
|
||||
let mut subpatterns = subpatterns.peekable();
|
||||
let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
|
||||
if slice.array_len.is_some() {
|
||||
// Improves diagnostics a bit: if the type is a known-size array, instead
|
||||
// of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
|
||||
// This is incorrect if the size is not known, since `[_, ..]` captures
|
||||
// arrays of lengths `>= 1` whereas `[..]` captures any length.
|
||||
while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
|
||||
prefix.pop();
|
||||
}
|
||||
while subpatterns.peek().is_some()
|
||||
&& is_wildcard(subpatterns.peek().unwrap())
|
||||
{
|
||||
subpatterns.next();
|
||||
}
|
||||
}
|
||||
let suffix: Box<[_]> = subpatterns.collect();
|
||||
let wild = Pat::wildcard_from_ty(self.ty);
|
||||
PatKind::Slice {
|
||||
prefix: prefix.into_boxed_slice(),
|
||||
slice: Some(Box::new(wild)),
|
||||
suffix,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
&Str(value) => PatKind::Constant { value },
|
||||
Wildcard | NonExhaustive | Hidden => PatKind::Wild,
|
||||
Missing { .. } => bug!(
|
||||
"trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
|
||||
`Missing` should have been processed in `apply_constructors`"
|
||||
),
|
||||
F32Range(..) | F64Range(..) | Opaque(..) | Or => {
|
||||
bug!("can't convert to pattern: {:?}", self)
|
||||
}
|
||||
};
|
||||
|
||||
Pat { ty: self.ty, span: DUMMY_SP, kind }
|
||||
}
|
||||
|
||||
pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<'tcx>> {
|
||||
self.fields.iter()
|
||||
}
|
||||
}
|
@ -552,19 +552,17 @@
|
||||
//! reason not to, for example if they crucially depend on a particular feature like `or_patterns`.
|
||||
|
||||
use self::ValidityConstraint::*;
|
||||
use super::deconstruct_pat::{
|
||||
Constructor, ConstructorSet, DeconstructedPat, IntRange, MaybeInfiniteInt, SplitConstructorSet,
|
||||
WitnessPat,
|
||||
use crate::constructor::{
|
||||
Constructor, ConstructorSet, IntRange, MaybeInfiniteInt, SplitConstructorSet,
|
||||
};
|
||||
use crate::errors::{
|
||||
NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
|
||||
OverlappingRangeEndpoints, Uncovered,
|
||||
};
|
||||
|
||||
use rustc_data_structures::captures::Captures;
|
||||
use crate::pat::{DeconstructedPat, WitnessPat};
|
||||
|
||||
use rustc_arena::TypedArena;
|
||||
use rustc_data_structures::stack::ensure_sufficient_stack;
|
||||
use rustc_data_structures::{captures::Captures, stack::ensure_sufficient_stack};
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_hir::HirId;
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||||
@ -575,27 +573,27 @@ use rustc_span::{Span, DUMMY_SP};
|
||||
use smallvec::{smallvec, SmallVec};
|
||||
use std::fmt;
|
||||
|
||||
pub(crate) struct MatchCheckCtxt<'p, 'tcx> {
|
||||
pub(crate) tcx: TyCtxt<'tcx>,
|
||||
pub struct MatchCheckCtxt<'p, 'tcx> {
|
||||
pub tcx: TyCtxt<'tcx>,
|
||||
/// The module in which the match occurs. This is necessary for
|
||||
/// checking inhabited-ness of types because whether a type is (visibly)
|
||||
/// inhabited can depend on whether it was defined in the current module or
|
||||
/// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
|
||||
/// outside its module and should not be matchable with an empty match statement.
|
||||
pub(crate) module: DefId,
|
||||
pub(crate) param_env: ty::ParamEnv<'tcx>,
|
||||
pub(crate) pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
|
||||
pub module: DefId,
|
||||
pub param_env: ty::ParamEnv<'tcx>,
|
||||
pub pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
|
||||
/// Lint level at the match.
|
||||
pub(crate) match_lint_level: HirId,
|
||||
pub match_lint_level: HirId,
|
||||
/// The span of the whole match, if applicable.
|
||||
pub(crate) whole_match_span: Option<Span>,
|
||||
pub whole_match_span: Option<Span>,
|
||||
/// Span of the scrutinee.
|
||||
pub(crate) scrut_span: Span,
|
||||
pub scrut_span: Span,
|
||||
/// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
|
||||
pub(crate) refutable: bool,
|
||||
pub refutable: bool,
|
||||
/// Whether the data at the scrutinee is known to be valid. This is false if the scrutinee comes
|
||||
/// from a union field, a pointer deref, or a reference deref (pending opsem decisions).
|
||||
pub(crate) known_valid_scrutinee: bool,
|
||||
pub known_valid_scrutinee: bool,
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
|
||||
@ -604,7 +602,7 @@ impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
|
||||
}
|
||||
|
||||
/// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
|
||||
pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
|
||||
pub fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
|
||||
match ty.kind() {
|
||||
ty::Adt(def, ..) => {
|
||||
def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
|
||||
@ -1535,16 +1533,16 @@ fn lint_overlapping_range_endpoints<'p, 'tcx>(
|
||||
|
||||
/// The arm of a match expression.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub(crate) struct MatchArm<'p, 'tcx> {
|
||||
pub struct MatchArm<'p, 'tcx> {
|
||||
/// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
|
||||
pub(crate) pat: &'p DeconstructedPat<'p, 'tcx>,
|
||||
pub(crate) hir_id: HirId,
|
||||
pub(crate) has_guard: bool,
|
||||
pub pat: &'p DeconstructedPat<'p, 'tcx>,
|
||||
pub hir_id: HirId,
|
||||
pub has_guard: bool,
|
||||
}
|
||||
|
||||
/// Indicates whether or not a given arm is useful.
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) enum Usefulness {
|
||||
pub enum Usefulness {
|
||||
/// The arm is useful. This additionally carries a set of or-pattern branches that have been
|
||||
/// found to be redundant despite the overall arm being useful. Used only in the presence of
|
||||
/// or-patterns, otherwise it stays empty.
|
||||
@ -1555,18 +1553,18 @@ pub(crate) enum Usefulness {
|
||||
}
|
||||
|
||||
/// The output of checking a match for exhaustiveness and arm usefulness.
|
||||
pub(crate) struct UsefulnessReport<'p, 'tcx> {
|
||||
pub struct UsefulnessReport<'p, 'tcx> {
|
||||
/// For each arm of the input, whether that arm is useful after the arms above it.
|
||||
pub(crate) arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness)>,
|
||||
pub arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness)>,
|
||||
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
|
||||
/// exhaustiveness.
|
||||
pub(crate) non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
|
||||
pub non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
|
||||
}
|
||||
|
||||
/// The entrypoint for this file. Computes whether a match is exhaustive and which of its arms are
|
||||
/// useful.
|
||||
#[instrument(skip(cx, arms), level = "debug")]
|
||||
pub(crate) fn compute_match_usefulness<'p, 'tcx>(
|
||||
pub fn compute_match_usefulness<'p, 'tcx>(
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
arms: &[MatchArm<'p, 'tcx>],
|
||||
scrut_ty: Ty<'tcx>,
|
Loading…
x
Reference in New Issue
Block a user