Rollup merge of #119835 - Nadrieril:simplify-empty-logic, r=compiler-errors

Exhaustiveness: simplify empty pattern logic

The logic that handles empty patterns had gotten quite convoluted. This PR simplifies it a lot. I tried to make the logic as easy as possible to follow; this only does logically equivalent changes.

The first commit is a drive-by comment clarification that was requested after another PR a while back.

r? `@compiler-errors`
This commit is contained in:
Matthias Krüger 2024-01-19 19:27:00 +01:00 committed by GitHub
commit 2587100a9b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 30 additions and 51 deletions

View File

@ -289,7 +289,8 @@ fn lower_pattern(
fn is_known_valid_scrutinee(&self, scrutinee: &Expr<'tcx>) -> bool {
use ExprKind::*;
match &scrutinee.kind {
// Both pointers and references can validly point to a place with invalid data.
// Pointers can validly point to a place with invalid data. It is undecided whether
// references can too, so we conservatively assume they can.
Deref { .. } => false,
// Inherit validity of the parent place, unless the parent is an union.
Field { lhs, .. } => {

View File

@ -861,12 +861,14 @@ impl<Cx: TypeCx> ConstructorSet<Cx> {
/// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
/// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
/// and its invariants.
#[instrument(level = "debug", skip(self, pcx, ctors), ret)]
#[instrument(level = "debug", skip(self, ctors), ret)]
pub(crate) fn split<'a>(
&self,
pcx: &PlaceCtxt<'a, Cx>,
ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
) -> SplitConstructorSet<Cx> {
) -> SplitConstructorSet<Cx>
where
Cx: 'a,
{
let mut present: SmallVec<[_; 1]> = SmallVec::new();
// Empty constructors found missing.
let mut missing_empty = Vec::new();
@ -1006,17 +1008,6 @@ pub(crate) fn split<'a>(
}
}
// We have now grouped all the constructors into 3 buckets: present, missing, missing_empty.
// In the absence of the `exhaustive_patterns` feature however, we don't count nested empty
// types as empty. Only non-nested `!` or `enum Foo {}` are considered empty.
if !pcx.mcx.tycx.is_exhaustive_patterns_feature_on()
&& !(pcx.is_scrutinee && matches!(self, Self::NoConstructors))
{
// Treat all missing constructors as nonempty.
// This clears `missing_empty`.
missing.append(&mut missing_empty);
}
SplitConstructorSet { present, missing, missing_empty }
}
}

View File

@ -56,7 +56,7 @@ fn analyze_ctors(
) -> Result<SplitConstructorSet<'p, 'tcx>, ErrorGuaranteed> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
let ctors_for_ty = &pcx.ctors_for_ty()?;
Ok(ctors_for_ty.split(pcx, column_ctors))
Ok(ctors_for_ty.split(column_ctors))
}
/// Does specialization: given a constructor, this takes the patterns from the column that match

View File

@ -737,15 +737,13 @@ pub(crate) struct PlaceCtxt<'a, Cx: TypeCx> {
pub(crate) mcx: MatchCtxt<'a, Cx>,
/// Type of the place under investigation.
pub(crate) ty: Cx::Ty,
/// Whether the place is the original scrutinee place, as opposed to a subplace of it.
pub(crate) is_scrutinee: bool,
}
impl<'a, Cx: TypeCx> PlaceCtxt<'a, Cx> {
/// A `PlaceCtxt` when code other than `is_useful` needs one.
#[cfg_attr(not(feature = "rustc"), allow(dead_code))]
pub(crate) fn new_dummy(mcx: MatchCtxt<'a, Cx>, ty: Cx::Ty) -> Self {
PlaceCtxt { mcx, ty, is_scrutinee: false }
PlaceCtxt { mcx, ty }
}
pub(crate) fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
@ -768,9 +766,6 @@ pub(crate) fn ctors_for_ty(&self) -> Result<ConstructorSet<Cx>, Cx::Error> {
pub enum ValidityConstraint {
ValidOnly,
MaybeInvalid,
/// Option for backwards compatibility: the place is not known to be valid but we allow omitting
/// `useful && !reachable` arms anyway.
MaybeInvalidButAllowOmittingArms,
}
impl ValidityConstraint {
@ -778,20 +773,9 @@ pub fn from_bool(is_valid_only: bool) -> Self {
if is_valid_only { ValidOnly } else { MaybeInvalid }
}
fn allow_omitting_side_effecting_arms(self) -> Self {
match self {
MaybeInvalid | MaybeInvalidButAllowOmittingArms => MaybeInvalidButAllowOmittingArms,
// There are no side-effecting empty arms here, nothing to do.
ValidOnly => ValidOnly,
}
}
fn is_known_valid(self) -> bool {
matches!(self, ValidOnly)
}
fn allows_omitting_empty_arms(self) -> bool {
matches!(self, ValidOnly | MaybeInvalidButAllowOmittingArms)
}
/// If the place has validity given by `self` and we read that the value at the place has
/// constructor `ctor`, this computes what we can assume about the validity of the constructor
@ -814,7 +798,7 @@ impl fmt::Display for ValidityConstraint {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let s = match self {
ValidOnly => "",
MaybeInvalid | MaybeInvalidButAllowOmittingArms => "?",
MaybeInvalid => "?",
};
write!(f, "{s}")
}
@ -1447,41 +1431,44 @@ fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
};
debug!("ty: {ty:?}");
let pcx = &PlaceCtxt { mcx, ty, is_scrutinee: is_top_level };
let pcx = &PlaceCtxt { mcx, ty };
let ctors_for_ty = pcx.ctors_for_ty()?;
// Whether the place/column we are inspecting is known to contain valid data.
let place_validity = matrix.place_validity[0];
// For backwards compability we allow omitting some empty arms that we ideally shouldn't.
let place_validity = place_validity.allow_omitting_side_effecting_arms();
// We treat match scrutinees of type `!` or `EmptyEnum` differently.
let is_toplevel_exception =
is_top_level && matches!(ctors_for_ty, ConstructorSet::NoConstructors);
// Whether empty patterns can be omitted for exhaustiveness.
let can_omit_empty_arms = is_toplevel_exception || mcx.tycx.is_exhaustive_patterns_feature_on();
// Whether empty patterns are counted as useful or not.
let empty_arms_are_unreachable = place_validity.is_known_valid() && can_omit_empty_arms;
// Analyze the constructors present in this column.
let ctors = matrix.heads().map(|p| p.ctor());
let ctors_for_ty = pcx.ctors_for_ty()?;
let is_integers = matches!(ctors_for_ty, ConstructorSet::Integers { .. }); // For diagnostics.
let split_set = ctors_for_ty.split(pcx, ctors);
let mut split_set = ctors_for_ty.split(ctors);
let all_missing = split_set.present.is_empty();
// Build the set of constructors we will specialize with. It must cover the whole type.
// We need to iterate over a full set of constructors, so we add `Missing` to represent the
// missing ones. This is explained under "Constructor Splitting" at the top of this file.
let mut split_ctors = split_set.present;
if !split_set.missing.is_empty() {
// We need to iterate over a full set of constructors, so we add `Missing` to represent the
// missing ones. This is explained under "Constructor Splitting" at the top of this file.
split_ctors.push(Constructor::Missing);
} else if !split_set.missing_empty.is_empty() && !place_validity.is_known_valid() {
// The missing empty constructors are reachable if the place can contain invalid data.
if !(split_set.missing.is_empty()
&& (split_set.missing_empty.is_empty() || empty_arms_are_unreachable))
{
split_ctors.push(Constructor::Missing);
}
// Decide what constructors to report.
let is_integers = matches!(ctors_for_ty, ConstructorSet::Integers { .. });
let always_report_all = is_top_level && !is_integers;
// Whether we should report "Enum::A and Enum::C are missing" or "_ is missing".
let report_individual_missing_ctors = always_report_all || !all_missing;
// Which constructors are considered missing. We ensure that `!missing_ctors.is_empty() =>
// split_ctors.contains(Missing)`. The converse usually holds except in the
// `MaybeInvalidButAllowOmittingArms` backwards-compatibility case.
// split_ctors.contains(Missing)`. The converse usually holds except when
// `!place_validity.is_known_valid()`.
let mut missing_ctors = split_set.missing;
if !place_validity.allows_omitting_empty_arms() {
missing_ctors.extend(split_set.missing_empty);
if !can_omit_empty_arms {
missing_ctors.append(&mut split_set.missing_empty);
}
let mut ret = WitnessMatrix::empty();