Uplift push_outlives_components

This commit is contained in:
Michael Goulet 2024-07-05 15:28:47 -04:00
parent 3bec61736a
commit 23c6f23b21
12 changed files with 386 additions and 300 deletions

View File

@ -1,266 +0,0 @@
// The outlines relation `T: 'a` or `'a: 'b`. This code frequently
// refers to rules defined in RFC 1214 (`OutlivesFooBar`), so see that
// RFC for reference.
use rustc_data_structures::sso::SsoHashSet;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt};
use rustc_middle::ty::{GenericArg, GenericArgKind};
use smallvec::{smallvec, SmallVec};
#[derive(Debug)]
pub enum Component<'tcx> {
Region(ty::Region<'tcx>),
Param(ty::ParamTy),
Placeholder(ty::PlaceholderType),
UnresolvedInferenceVariable(ty::InferTy),
// Projections like `T::Foo` are tricky because a constraint like
// `T::Foo: 'a` can be satisfied in so many ways. There may be a
// where-clause that says `T::Foo: 'a`, or the defining trait may
// include a bound like `type Foo: 'static`, or -- in the most
// conservative way -- we can prove that `T: 'a` (more generally,
// that all components in the projection outlive `'a`). This code
// is not in a position to judge which is the best technique, so
// we just product the projection as a component and leave it to
// the consumer to decide (but see `EscapingProjection` below).
Alias(ty::AliasTy<'tcx>),
// In the case where a projection has escaping regions -- meaning
// regions bound within the type itself -- we always use
// the most conservative rule, which requires that all components
// outlive the bound. So for example if we had a type like this:
//
// for<'a> Trait1< <T as Trait2<'a,'b>>::Foo >
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// then the inner projection (underlined) has an escaping region
// `'a`. We consider that outer trait `'c` to meet a bound if `'b`
// outlives `'b: 'c`, and we don't consider whether the trait
// declares that `Foo: 'static` etc. Therefore, we just return the
// free components of such a projection (in this case, `'b`).
//
// However, in the future, we may want to get smarter, and
// actually return a "higher-ranked projection" here. Therefore,
// we mark that these components are part of an escaping
// projection, so that implied bounds code can avoid relying on
// them. This gives us room to improve the regionck reasoning in
// the future without breaking backwards compat.
EscapingAlias(Vec<Component<'tcx>>),
}
/// Push onto `out` all the things that must outlive `'a` for the condition
/// `ty0: 'a` to hold. Note that `ty0` must be a **fully resolved type**.
pub fn push_outlives_components<'tcx>(
tcx: TyCtxt<'tcx>,
ty0: Ty<'tcx>,
out: &mut SmallVec<[Component<'tcx>; 4]>,
) {
let mut visited = SsoHashSet::new();
compute_components(tcx, ty0, out, &mut visited);
debug!("components({:?}) = {:?}", ty0, out);
}
fn compute_components<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
out: &mut SmallVec<[Component<'tcx>; 4]>,
visited: &mut SsoHashSet<GenericArg<'tcx>>,
) {
// Descend through the types, looking for the various "base"
// components and collecting them into `out`. This is not written
// with `collect()` because of the need to sometimes skip subtrees
// in the `subtys` iterator (e.g., when encountering a
// projection).
match *ty.kind() {
ty::FnDef(_, args) => {
// HACK(eddyb) ignore lifetimes found shallowly in `args`.
// This is inconsistent with `ty::Adt` (including all args)
// and with `ty::Closure` (ignoring all args other than
// upvars, of which a `ty::FnDef` doesn't have any), but
// consistent with previous (accidental) behavior.
// See https://github.com/rust-lang/rust/issues/70917
// for further background and discussion.
for child in args {
match child.unpack() {
GenericArgKind::Type(ty) => {
compute_components(tcx, ty, out, visited);
}
GenericArgKind::Lifetime(_) => {}
GenericArgKind::Const(_) => {
compute_components_recursive(tcx, child, out, visited);
}
}
}
}
ty::Pat(element, _) |
ty::Array(element, _) => {
// Don't look into the len const as it doesn't affect regions
compute_components(tcx, element, out, visited);
}
ty::Closure(_, args) => {
let tupled_ty = args.as_closure().tupled_upvars_ty();
compute_components(tcx, tupled_ty, out, visited);
}
ty::CoroutineClosure(_, args) => {
let tupled_ty = args.as_coroutine_closure().tupled_upvars_ty();
compute_components(tcx, tupled_ty, out, visited);
}
ty::Coroutine(_, args) => {
// Same as the closure case
let tupled_ty = args.as_coroutine().tupled_upvars_ty();
compute_components(tcx, tupled_ty, out, visited);
// We ignore regions in the coroutine interior as we don't
// want these to affect region inference
}
// All regions are bound inside a witness
ty::CoroutineWitness(..) => (),
// OutlivesTypeParameterEnv -- the actual checking that `X:'a`
// is implied by the environment is done in regionck.
ty::Param(p) => {
out.push(Component::Param(p));
}
ty::Placeholder(p) => {
out.push(Component::Placeholder(p));
}
// For projections, we prefer to generate an obligation like
// `<P0 as Trait<P1...Pn>>::Foo: 'a`, because this gives the
// regionck more ways to prove that it holds. However,
// regionck is not (at least currently) prepared to deal with
// higher-ranked regions that may appear in the
// trait-ref. Therefore, if we see any higher-ranked regions,
// we simply fallback to the most restrictive rule, which
// requires that `Pi: 'a` for all `i`.
ty::Alias(_, alias_ty) => {
if !alias_ty.has_escaping_bound_vars() {
// best case: no escaping regions, so push the
// projection and skip the subtree (thus generating no
// constraints for Pi). This defers the choice between
// the rules OutlivesProjectionEnv,
// OutlivesProjectionTraitDef, and
// OutlivesProjectionComponents to regionck.
out.push(Component::Alias(alias_ty));
} else {
// fallback case: hard code
// OutlivesProjectionComponents. Continue walking
// through and constrain Pi.
let mut subcomponents = smallvec![];
let mut subvisited = SsoHashSet::new();
compute_alias_components_recursive(tcx, ty, &mut subcomponents, &mut subvisited);
out.push(Component::EscapingAlias(subcomponents.into_iter().collect()));
}
}
// We assume that inference variables are fully resolved.
// So, if we encounter an inference variable, just record
// the unresolved variable as a component.
ty::Infer(infer_ty) => {
out.push(Component::UnresolvedInferenceVariable(infer_ty));
}
// Most types do not introduce any region binders, nor
// involve any other subtle cases, and so the WF relation
// simply constraints any regions referenced directly by
// the type and then visits the types that are lexically
// contained within. (The comments refer to relevant rules
// from RFC1214.)
ty::Bool | // OutlivesScalar
ty::Char | // OutlivesScalar
ty::Int(..) | // OutlivesScalar
ty::Uint(..) | // OutlivesScalar
ty::Float(..) | // OutlivesScalar
ty::Never | // ...
ty::Adt(..) | // OutlivesNominalType
ty::Foreign(..) | // OutlivesNominalType
ty::Str | // OutlivesScalar (ish)
ty::Slice(..) | // ...
ty::RawPtr(..) | // ...
ty::Ref(..) | // OutlivesReference
ty::Tuple(..) | // ...
ty::FnPtr(_) | // OutlivesFunction (*)
ty::Dynamic(..) | // OutlivesObject, OutlivesFragment (*)
ty::Bound(..) |
ty::Error(_) => {
// (*) Function pointers and trait objects are both binders.
// In the RFC, this means we would add the bound regions to
// the "bound regions list". In our representation, no such
// list is maintained explicitly, because bound regions
// themselves can be readily identified.
compute_components_recursive(tcx, ty.into(), out, visited);
}
}
}
/// Collect [Component]s for *all* the args of `parent`.
///
/// This should not be used to get the components of `parent` itself.
/// Use [push_outlives_components] instead.
pub(super) fn compute_alias_components_recursive<'tcx>(
tcx: TyCtxt<'tcx>,
alias_ty: Ty<'tcx>,
out: &mut SmallVec<[Component<'tcx>; 4]>,
visited: &mut SsoHashSet<GenericArg<'tcx>>,
) {
let ty::Alias(kind, alias_ty) = alias_ty.kind() else {
unreachable!("can only call `compute_alias_components_recursive` on an alias type")
};
let opt_variances = if *kind == ty::Opaque { tcx.variances_of(alias_ty.def_id) } else { &[] };
for (index, child) in alias_ty.args.iter().enumerate() {
if opt_variances.get(index) == Some(&ty::Bivariant) {
continue;
}
if !visited.insert(child) {
continue;
}
match child.unpack() {
GenericArgKind::Type(ty) => {
compute_components(tcx, ty, out, visited);
}
GenericArgKind::Lifetime(lt) => {
// Ignore higher ranked regions.
if !lt.is_bound() {
out.push(Component::Region(lt));
}
}
GenericArgKind::Const(_) => {
compute_components_recursive(tcx, child, out, visited);
}
}
}
}
/// Collect [Component]s for *all* the args of `parent`.
///
/// This should not be used to get the components of `parent` itself.
/// Use [push_outlives_components] instead.
fn compute_components_recursive<'tcx>(
tcx: TyCtxt<'tcx>,
parent: GenericArg<'tcx>,
out: &mut SmallVec<[Component<'tcx>; 4]>,
visited: &mut SsoHashSet<GenericArg<'tcx>>,
) {
for child in parent.walk_shallow(visited) {
match child.unpack() {
GenericArgKind::Type(ty) => {
compute_components(tcx, ty, out, visited);
}
GenericArgKind::Lifetime(lt) => {
// Ignore higher ranked regions.
if !lt.is_bound() {
out.push(Component::Region(lt));
}
}
GenericArgKind::Const(_) => {
compute_components_recursive(tcx, child, out, visited);
}
}
}
}

View File

@ -7,8 +7,9 @@
use crate::infer::lexical_region_resolve;
use rustc_middle::traits::query::{NoSolution, OutlivesBound};
use rustc_middle::ty;
// TODO: Remove me
pub use rustc_type_ir::outlives as components;
pub mod components;
pub mod env;
pub mod for_liveness;
pub mod obligations;

View File

@ -291,7 +291,7 @@ pub fn type_must_outlive(
fn components_must_outlive(
&mut self,
origin: infer::SubregionOrigin<'tcx>,
components: &[Component<'tcx>],
components: &[Component<TyCtxt<'tcx>>],
region: ty::Region<'tcx>,
category: ConstraintCategory<'tcx>,
) {

View File

@ -139,7 +139,7 @@ pub fn alias_bound(
fn bound_from_components(
&self,
components: &[Component<'tcx>],
components: &[Component<TyCtxt<'tcx>>],
visited: &mut SsoHashSet<GenericArg<'tcx>>,
) -> VerifyBound<'tcx> {
let mut bounds = components
@ -158,7 +158,7 @@ fn bound_from_components(
fn bound_from_single_component(
&self,
component: &Component<'tcx>,
component: &Component<TyCtxt<'tcx>>,
visited: &mut SsoHashSet<GenericArg<'tcx>>,
) -> VerifyBound<'tcx> {
match *component {

View File

@ -54,6 +54,13 @@ pub struct Expr<'tcx> {
pub kind: ExprKind,
args: ty::GenericArgsRef<'tcx>,
}
impl<'tcx> rustc_type_ir::inherent::ExprConst<TyCtxt<'tcx>> for Expr<'tcx> {
fn args(self) -> ty::GenericArgsRef<'tcx> {
self.args
}
}
impl<'tcx> Expr<'tcx> {
pub fn new_binop(
tcx: TyCtxt<'tcx>,

View File

@ -284,7 +284,7 @@ pub fn compute_implied_outlives_bounds_compat_inner<'tcx>(
/// those relationships.
fn implied_bounds_from_components<'tcx>(
sub_region: ty::Region<'tcx>,
sup_components: SmallVec<[Component<'tcx>; 4]>,
sup_components: SmallVec<[Component<TyCtxt<'tcx>>; 4]>,
) -> Vec<OutlivesBound<'tcx>> {
sup_components
.into_iter()

View File

@ -232,6 +232,10 @@ pub trait Region<I: Interner<Region = Self>>:
fn new_anon_bound(interner: I, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self;
fn new_static(interner: I) -> Self;
fn is_bound(self) -> bool {
matches!(self.kind(), ty::ReBound(..))
}
}
pub trait Const<I: Interner<Const = Self>>:
@ -272,6 +276,10 @@ fn is_ct_var(self) -> bool {
}
}
pub trait ExprConst<I: Interner<ExprConst = Self>>: Copy + Debug + Hash + Eq + Relate<I> {
fn args(self) -> I::GenericArgs;
}
pub trait GenericsOf<I: Interner<GenericsOf = Self>> {
fn count(&self) -> usize;
}

View File

@ -109,7 +109,7 @@ fn mk_external_constraints(
type ParamConst: Copy + Debug + Hash + Eq + ParamLike;
type BoundConst: Copy + Debug + Hash + Eq + BoundVarLike<Self>;
type ValueConst: Copy + Debug + Hash + Eq;
type ExprConst: Copy + Debug + Hash + Eq + Relate<Self>;
type ExprConst: ExprConst<Self>;
// Kinds of regions
type Region: Region<Self>;

View File

@ -27,6 +27,7 @@
pub mod ir_print;
pub mod lang_items;
pub mod lift;
pub mod outlives;
pub mod relate;
pub mod solve;

View File

@ -0,0 +1,335 @@
//! The outlives relation `T: 'a` or `'a: 'b`. This code frequently
//! refers to rules defined in RFC 1214 (`OutlivesFooBar`), so see that
//! RFC for reference.
use smallvec::{smallvec, SmallVec};
use tracing::debug;
use crate::data_structures::SsoHashSet;
use crate::inherent::*;
use crate::visit::TypeVisitableExt as _;
use crate::{self as ty, Interner};
#[derive(derivative::Derivative)]
#[derivative(Debug(bound = ""))]
pub enum Component<I: Interner> {
Region(I::Region),
Param(I::ParamTy),
Placeholder(I::PlaceholderTy),
UnresolvedInferenceVariable(ty::InferTy),
// Projections like `T::Foo` are tricky because a constraint like
// `T::Foo: 'a` can be satisfied in so many ways. There may be a
// where-clause that says `T::Foo: 'a`, or the defining trait may
// include a bound like `type Foo: 'static`, or -- in the most
// conservative way -- we can prove that `T: 'a` (more generally,
// that all components in the projection outlive `'a`). This code
// is not in a position to judge which is the best technique, so
// we just product the projection as a component and leave it to
// the consumer to decide (but see `EscapingProjection` below).
Alias(ty::AliasTy<I>),
// In the case where a projection has escaping regions -- meaning
// regions bound within the type itself -- we always use
// the most conservative rule, which requires that all components
// outlive the bound. So for example if we had a type like this:
//
// for<'a> Trait1< <T as Trait2<'a,'b>>::Foo >
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// then the inner projection (underlined) has an escaping region
// `'a`. We consider that outer trait `'c` to meet a bound if `'b`
// outlives `'b: 'c`, and we don't consider whether the trait
// declares that `Foo: 'static` etc. Therefore, we just return the
// free components of such a projection (in this case, `'b`).
//
// However, in the future, we may want to get smarter, and
// actually return a "higher-ranked projection" here. Therefore,
// we mark that these components are part of an escaping
// projection, so that implied bounds code can avoid relying on
// them. This gives us room to improve the regionck reasoning in
// the future without breaking backwards compat.
EscapingAlias(Vec<Component<I>>),
}
/// Push onto `out` all the things that must outlive `'a` for the condition
/// `ty0: 'a` to hold. Note that `ty0` must be a **fully resolved type**.
pub fn push_outlives_components<I: Interner>(
tcx: I,
ty0: I::Ty,
out: &mut SmallVec<[Component<I>; 4]>,
) {
let mut visited = SsoHashSet::new();
compute_components_for_ty(tcx, ty0, out, &mut visited);
debug!("components({:?}) = {:?}", ty0, out);
}
fn compute_components_for_arg<I: Interner>(
tcx: I,
arg: I::GenericArg,
out: &mut SmallVec<[Component<I>; 4]>,
visited: &mut SsoHashSet<I::GenericArg>,
) {
match arg.kind() {
ty::GenericArgKind::Type(ty) => {
compute_components_for_ty(tcx, ty, out, visited);
}
ty::GenericArgKind::Lifetime(lt) => {
compute_components_for_lt(lt, out);
}
ty::GenericArgKind::Const(ct) => {
compute_components_for_const(tcx, ct, out, visited);
}
}
}
fn compute_components_for_ty<I: Interner>(
tcx: I,
ty: I::Ty,
out: &mut SmallVec<[Component<I>; 4]>,
visited: &mut SsoHashSet<I::GenericArg>,
) {
if !visited.insert(ty.into()) {
return;
}
// Descend through the types, looking for the various "base"
// components and collecting them into `out`. This is not written
// with `collect()` because of the need to sometimes skip subtrees
// in the `subtys` iterator (e.g., when encountering a
// projection).
match ty.kind() {
ty::FnDef(_, args) => {
// HACK(eddyb) ignore lifetimes found shallowly in `args`.
// This is inconsistent with `ty::Adt` (including all args)
// and with `ty::Closure` (ignoring all args other than
// upvars, of which a `ty::FnDef` doesn't have any), but
// consistent with previous (accidental) behavior.
// See https://github.com/rust-lang/rust/issues/70917
// for further background and discussion.
for child in args.iter() {
match child.kind() {
ty::GenericArgKind::Type(ty) => {
compute_components_for_ty(tcx, ty, out, visited);
}
ty::GenericArgKind::Lifetime(_) => {}
ty::GenericArgKind::Const(ct) => {
compute_components_for_const(tcx, ct, out, visited);
}
}
}
}
ty::Pat(element, _) | ty::Array(element, _) => {
compute_components_for_ty(tcx, element, out, visited);
}
ty::Closure(_, args) => {
let tupled_ty = args.as_closure().tupled_upvars_ty();
compute_components_for_ty(tcx, tupled_ty, out, visited);
}
ty::CoroutineClosure(_, args) => {
let tupled_ty = args.as_coroutine_closure().tupled_upvars_ty();
compute_components_for_ty(tcx, tupled_ty, out, visited);
}
ty::Coroutine(_, args) => {
// Same as the closure case
let tupled_ty = args.as_coroutine().tupled_upvars_ty();
compute_components_for_ty(tcx, tupled_ty, out, visited);
// We ignore regions in the coroutine interior as we don't
// want these to affect region inference
}
// All regions are bound inside a witness, and we don't emit
// higher-ranked outlives components currently.
ty::CoroutineWitness(..) => {},
// OutlivesTypeParameterEnv -- the actual checking that `X:'a`
// is implied by the environment is done in regionck.
ty::Param(p) => {
out.push(Component::Param(p));
}
ty::Placeholder(p) => {
out.push(Component::Placeholder(p));
}
// For projections, we prefer to generate an obligation like
// `<P0 as Trait<P1...Pn>>::Foo: 'a`, because this gives the
// regionck more ways to prove that it holds. However,
// regionck is not (at least currently) prepared to deal with
// higher-ranked regions that may appear in the
// trait-ref. Therefore, if we see any higher-ranked regions,
// we simply fallback to the most restrictive rule, which
// requires that `Pi: 'a` for all `i`.
ty::Alias(_, alias_ty) => {
if !alias_ty.has_escaping_bound_vars() {
// best case: no escaping regions, so push the
// projection and skip the subtree (thus generating no
// constraints for Pi). This defers the choice between
// the rules OutlivesProjectionEnv,
// OutlivesProjectionTraitDef, and
// OutlivesProjectionComponents to regionck.
out.push(Component::Alias(alias_ty));
} else {
// fallback case: hard code
// OutlivesProjectionComponents. Continue walking
// through and constrain Pi.
let mut subcomponents = smallvec![];
let mut subvisited = SsoHashSet::new();
compute_alias_components_recursive(tcx, ty, &mut subcomponents, &mut subvisited);
out.push(Component::EscapingAlias(subcomponents.into_iter().collect()));
}
}
// We assume that inference variables are fully resolved.
// So, if we encounter an inference variable, just record
// the unresolved variable as a component.
ty::Infer(infer_ty) => {
out.push(Component::UnresolvedInferenceVariable(infer_ty));
}
// Most types do not introduce any region binders, nor
// involve any other subtle cases, and so the WF relation
// simply constraints any regions referenced directly by
// the type and then visits the types that are lexically
// contained within. (The comments refer to relevant rules
// from RFC1214.)
ty::Bool | // OutlivesScalar
ty::Char | // OutlivesScalar
ty::Int(..) | // OutlivesScalar
ty::Uint(..) | // OutlivesScalar
ty::Float(..) | // OutlivesScalar
ty::Never | // OutlivesScalar
ty::Foreign(..) | // OutlivesNominalType
ty::Str | // OutlivesScalar (ish)
ty::Bound(..) |
ty::Error(_) => {
// Trivial.
}
// OutlivesNominalType
ty::Adt(_, args) => {
for arg in args.iter() {
compute_components_for_arg(tcx, arg, out, visited);
}
}
// OutlivesNominalType
ty::Slice(ty) |
ty::RawPtr(ty, _) => {
compute_components_for_ty(tcx, ty, out, visited);
}
ty::Tuple(tys) => {
for ty in tys.iter() {
compute_components_for_ty(tcx, ty, out, visited);
}
}
// OutlivesReference
ty::Ref(lt, ty, _) => {
compute_components_for_lt(lt, out);
compute_components_for_ty(tcx, ty, out, visited);
}
ty::Dynamic(preds, lt, _) => {
compute_components_for_lt(lt, out);
for pred in preds.iter() {
match pred.skip_binder() {
ty::ExistentialPredicate::Trait(tr) => {
for arg in tr.args.iter() {
compute_components_for_arg(tcx, arg, out, visited);
}
}
ty::ExistentialPredicate::Projection(proj) => {
for arg in proj.args.iter() {
compute_components_for_arg(tcx, arg, out, visited);
}
match proj.term.kind() {
ty::TermKind::Ty(ty) => {
compute_components_for_ty(tcx, ty, out, visited)
}
ty::TermKind::Const(ct) => {
compute_components_for_const(tcx, ct, out, visited)
}
}
}
ty::ExistentialPredicate::AutoTrait(..) => {}
}
}
}
ty::FnPtr(sig) => {
for ty in sig.skip_binder().inputs_and_output.iter() {
compute_components_for_ty(tcx, ty, out, visited);
}
}
}
}
/// Collect [Component]s for *all* the args of `parent`.
///
/// This should not be used to get the components of `parent` itself.
/// Use [push_outlives_components] instead.
pub fn compute_alias_components_recursive<I: Interner>(
tcx: I,
alias_ty: I::Ty,
out: &mut SmallVec<[Component<I>; 4]>,
visited: &mut SsoHashSet<I::GenericArg>,
) {
let ty::Alias(kind, alias_ty) = alias_ty.kind() else {
unreachable!("can only call `compute_alias_components_recursive` on an alias type")
};
let opt_variances =
if kind == ty::Opaque { Some(tcx.variances_of(alias_ty.def_id)) } else { None };
for (index, child) in alias_ty.args.iter().enumerate() {
if opt_variances.and_then(|variances| variances.get(index)) == Some(ty::Bivariant) {
continue;
}
compute_components_for_arg(tcx, child, out, visited);
}
}
fn compute_components_for_lt<I: Interner>(lt: I::Region, out: &mut SmallVec<[Component<I>; 4]>) {
if !lt.is_bound() {
out.push(Component::Region(lt));
}
}
fn compute_components_for_const<I: Interner>(
tcx: I,
ct: I::Const,
out: &mut SmallVec<[Component<I>; 4]>,
visited: &mut SsoHashSet<I::GenericArg>,
) {
if !visited.insert(ct.into()) {
return;
}
match ct.kind() {
ty::ConstKind::Param(_)
| ty::ConstKind::Bound(_, _)
| ty::ConstKind::Infer(_)
| ty::ConstKind::Placeholder(_)
| ty::ConstKind::Error(_) => {
// Trivial
}
ty::ConstKind::Expr(e) => {
for arg in e.args().iter() {
compute_components_for_arg(tcx, arg, out, visited);
}
}
ty::ConstKind::Value(ty, _) => {
compute_components_for_ty(tcx, ty, out, visited);
}
ty::ConstKind::Unevaluated(uv) => {
for arg in uv.args.iter() {
compute_components_for_arg(tcx, arg, out, visited);
}
}
}
}

View File

@ -1,17 +1,3 @@
error[E0311]: the parameter type `U` may not live long enough
--> $DIR/async-generics-and-bounds.rs:9:5
|
LL | async fn foo(&self) -> &(T, U) where T: Debug + Sized, U: Hash;
| ^^^^^^^^^^^^^-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
| | |
| | the parameter type `U` must be valid for the anonymous lifetime as defined here...
| ...so that the reference type `&(T, U)` does not outlive the data it points at
|
help: consider adding an explicit lifetime bound
|
LL | async fn foo<'a>(&'a self) -> &'a (T, U) where T: Debug + Sized, U: Hash, U: 'a;
| ++++ ++ ++ +++++++
error[E0311]: the parameter type `T` may not live long enough
--> $DIR/async-generics-and-bounds.rs:9:5
|
@ -26,6 +12,20 @@ help: consider adding an explicit lifetime bound
LL | async fn foo<'a>(&'a self) -> &'a (T, U) where T: Debug + Sized, U: Hash, T: 'a;
| ++++ ++ ++ +++++++
error[E0311]: the parameter type `U` may not live long enough
--> $DIR/async-generics-and-bounds.rs:9:5
|
LL | async fn foo(&self) -> &(T, U) where T: Debug + Sized, U: Hash;
| ^^^^^^^^^^^^^-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
| | |
| | the parameter type `U` must be valid for the anonymous lifetime as defined here...
| ...so that the reference type `&(T, U)` does not outlive the data it points at
|
help: consider adding an explicit lifetime bound
|
LL | async fn foo<'a>(&'a self) -> &'a (T, U) where T: Debug + Sized, U: Hash, U: 'a;
| ++++ ++ ++ +++++++
error: aborting due to 2 previous errors
For more information about this error, try `rustc --explain E0311`.

View File

@ -1,17 +1,3 @@
error[E0311]: the parameter type `U` may not live long enough
--> $DIR/async-generics.rs:6:5
|
LL | async fn foo(&self) -> &(T, U);
| ^^^^^^^^^^^^^-^^^^^^^^^^^^^^^^^
| | |
| | the parameter type `U` must be valid for the anonymous lifetime as defined here...
| ...so that the reference type `&(T, U)` does not outlive the data it points at
|
help: consider adding an explicit lifetime bound
|
LL | async fn foo<'a>(&'a self) -> &'a (T, U) where U: 'a;
| ++++ ++ ++ +++++++++++
error[E0311]: the parameter type `T` may not live long enough
--> $DIR/async-generics.rs:6:5
|
@ -26,6 +12,20 @@ help: consider adding an explicit lifetime bound
LL | async fn foo<'a>(&'a self) -> &'a (T, U) where T: 'a;
| ++++ ++ ++ +++++++++++
error[E0311]: the parameter type `U` may not live long enough
--> $DIR/async-generics.rs:6:5
|
LL | async fn foo(&self) -> &(T, U);
| ^^^^^^^^^^^^^-^^^^^^^^^^^^^^^^^
| | |
| | the parameter type `U` must be valid for the anonymous lifetime as defined here...
| ...so that the reference type `&(T, U)` does not outlive the data it points at
|
help: consider adding an explicit lifetime bound
|
LL | async fn foo<'a>(&'a self) -> &'a (T, U) where U: 'a;
| ++++ ++ ++ +++++++++++
error: aborting due to 2 previous errors
For more information about this error, try `rustc --explain E0311`.